
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Development of a reconfigurable
multi-protocol verification environment

using UVM methodology

Pedro Araujo

WORKING VERSION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Teacher supervisor: José Carlos Alves

Company supervisors: Luis Cruz and Domingos Terra

June 30, 2014

c© Pedro Araujo, 2014

Resumo

Com o contínuo avanço da tecnologia CMOS, bem como, com o crescimento dos custos de pro-
dução, torna-se cada vez mais importante produzir circuitos que cumpram todas as especificações
á primeira (first time right). Uma má verificação pode conduzir a que a janela de mercado se feche,
enquanto se corrigem os erros detectados da primeira implementação.

O tipo de testes que têm de ser feitas para os diferentes protocolos é em grande parte similar,
apesar das especificidades inerentes a cada um. A metodologia de verificação UVM permite es-
truturar o ambiente de verificação numa arquitectura configurável baseada em camadas, utilizando
diferentes blocos genéricos. Desta forma é possível especializar o ambiente de verificação a um
dado protocolo adicionando apenas as funcionalidades necessárias à camada mais próxima do
DUT (Device Under Test).

O UVM é uma metodologia que segue um standard que foi criado pela Accellera em con-
junto com os maiores fabricantes de ferramentas de desenho de circuitos electrónicos (Synopsys,
Mentor, Cadence). Esta parceria pretende estabelecer uma uniformização na indústria electrónica,
aumentando a eficiência do desenvolvimento e reutilização dos ambientes de verificação usados.
O UVM é suportado pelas principais ferramentas de verificação/simulação de circuitos digitais,
o que o torna compatível com qualquer um dos simuladores das referidas empresas. A Accellera
disponibiliza para download uma API (Application Programming Interface) e uma implementação
de referência (baseado numa biblioteca de classes em SystemVerilog (IEEE 1800)), que suportam
o desenvolvimento de um ambiente de verificação genérico.

A dissertação origina da necessidade de reduzir o tempo de construção de um ambiente de
verificação para um novo projecto. Tendo esta necessidade em consideração, a presente disser-
tação foca-se na tarefa principal de desenvolver um ambiente de verificação genérico que suporte
arquitectura básica de vários protocolos de comunicação, e a reconfigurabilidade necessária para
suportar múltiplas configurações do mesmo DUT.

Este projecto foi sugerido pela Synopsys, uma das empresas líder na indústria da Electronic
Design Automation, e irá ser executado no contexto do trabalho realizado pela Synopsys com
protocolos de comunicação a alta velocidade. O project vai ser realizado com as ferramentas da
Synopsys para a simulação e execução de código Verilog e SystemVerilog.

O resultado do trabalho feito para esta dissertação irá consistir num ambiente de verificação
genérico desenvolvido em SystemVerilog e seguindo a metodologia UVM. Juntamente com o
ambiente desenvolvido, esta dissertação serve de documentação sobre as funções e classes criadas
e a relação establecidas entre elas.

i

ii

Abstract

With the ongoing progress of the CMOS technology, as well with the growing of production costs,
it’s more important than ever to develop digital circuits that comply with the specifications at the
first try (first time right). An incomplete verification can lead to a closing market window while
the errors detected during the first implementation are still being fixed.

The sort of tests that have to be done for the different communication protocols are very similar
between them, in despite of the nature of each one. The UVM verification methodology allows
to structure a verification environment in a configurable architecture based on layers by using a
variety of generic blocks. Thereby, it’s possible to specialize a verification environment to a given
protocol just by adding the necessary functionalities to the layers closer of the DUT (Device Under
Test).

UVM is a methodology that follows a standard created by Accellera jointly with the biggest
companies in the industry of electronic design automation (Synopsys, Mentor, Cadence). This
partnership intends to establish a standardization for verification methodologies in the electronic
industry, increasing the effiency of the development and the reusability of the employed verifica-
tion environments. UVM is used by the main verification/simulation tools of digital circuits and
therefore, it’s compatible with any of the simulators of the mentioned companies. Accellera pro-
vides an API (Application Programming Interface) and an implementation (based on a library of
classes in SystemVerilog (IEEE 1800)) which supports the development of verification environ-
ments.

This dissertation stems from the need in reducing the set up time of the verification envi-
ronment for a new project. By having this need in consideration, the present dissertation focus its
main goal in the development of a generic verification environment that supports the core architec-
ture of multiple communication protocols, and the necessary reconfigurability to support multiple
configurations of the same DUT.

The project was suggested by Synopsys, one of the leading companies in the Electronic Design
Automation industry, and it will performed within the scope of Synopsys’ work with high-speed
communication protocols. This project will be assisted by Synopsys’ tools for the simulation and
the execution of Verilog and SystemVerilog code.

The result of work done for this dissertation will consist on a generic verification environment
written in SystemVerilog while following the UVM methodology. Along with the developed en-
vironment, this dissertation provides a thorough documentation about the functions and classes
created and the relationship between them.

iii

iv

Acknowledgments

This project took more than 5 months to complete, 5 months of long working hours and of some
nights of short sleep. But it helped to have good people supporting me and keeping me on track,
specially during the hardest times.

Inside of this circle of people, I would like first to thank the people who proposed this project
in the first place: Luis Cruz and Domingos Terra. They had an incredible patience with me by
answering to all my questions whenever I needed, and the help that they provided me was essential.
I would also like to thank the professor José Carlos Alves, who was also part of the team and who
supervisioned me during the development of the project.

I would like to give my thanks to some friends who accompanied me during the long hours
spent at the office. They provided me with some good talks, which helped me to relax and to get
a new perspective whenever I got stuck in some part of the project: Denis Silva, Helder Campos
and Henrique Martins.

I want to include here, as well, the guys from the analog team: Bruno Silva, Hugo Gonçalves
and Patricio Ferreira. Their presence during the lunch and snack breaks was the most enjoyable
and their cookies, the tastiest.

And at last, but not the least, I would like to thank some special friends, friends that showed
me and taught me that distance doesn’t break friendships. I would like thank Charlotte, Daniel
and Fotini. They provided me with some company through some long nights, they reminded me
to keep my progress reports updated and they lifted my spirits during the bad days. They were
able to give the best of advices when I needed most and their support was the most important to
me. Thank you.

I also want to thank all my friends who shared me with some great moments throughout this
academic journey.

Pedro Araujo

v

vi

“All courses of action are risky,
so prudence is not in avoiding danger, but calculating risk and acting decisively.

Make mistakes of ambition and not mistakes of sloth.
Develop the strength to do bold things, not the strength to suffer.”

Niccolo Machiavelli

vii

viii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Structure of the document . 2

2 State of the art 5
2.1 Hardware Description Languages . 5
2.2 Functional Verification . 6
2.3 Hardware Verification Languages . 8
2.4 Verification Methodologies . 9
2.5 The Universal Verification Methodology . 10

2.5.1 UVM Overview . 11
2.5.2 UVM Classes . 12
2.5.3 UVM Phases . 14
2.5.4 UVM Macros . 15
2.5.5 Typical UVM class . 16
2.5.6 TLM-1: Ports . 17
2.5.7 TLM-2.0: Sockets . 20

2.6 Conclusion . 21

3 Analysis of communication protocols 23
3.1 X-PHY Overview . 23
3.2 X-PHY Verification . 27
3.3 I2C Overview . 31
3.4 I2C Verification . 33

3.4.1 Verifying an I2C slave . 34
3.4.2 Verifying an I2C master . 37
3.4.3 UVM verification components created for the I2C interfaces 38

3.5 SOC Overview . 39
3.6 SOC Verification Plan . 41

3.6.1 Testing the slave interface . 42
3.6.2 Testing the slave interface and the low-speed lane 42
3.6.3 Testing the slave interface and the low-speed and high-speed lanes 44

3.7 Conclusion . 46

4 The Verification Environment 47
4.1 Testbench Overview . 47

4.1.1 Class table . 52
4.1.2 File system . 54

ix

x CONTENTS

4.2 Configuration Blocks . 55
4.2.1 Agent configuration block . 55
4.2.2 Env configuration block . 57

4.3 The Test Block . 58
4.4 The Env Block . 59
4.5 The Agent Manager . 61
4.6 Generic Info Block . 62
4.7 Socket containers . 63
4.8 Agents . 66

4.8.1 Master Agent . 67
4.8.2 Slave Agent . 68

4.9 Broadcaster . 69
4.10 Monitors . 71

4.10.1 Master Monitors . 72
4.10.2 Slave Monitors . 73
4.10.3 Normal Monitors . 74

4.11 Drivers . 74
4.12 Scoreboard, Sequencers, sequences and transactions 75
4.13 Work flow . 75
4.14 Conclusion . 76

5 Application of the Environment to the SOC 77
5.1 Verification of the SOC . 77

5.1.1 I2C Master Agent . 78
5.1.2 I2C Slave Agent . 81
5.1.3 Grouping the agents . 82

5.2 Conclusion . 84

6 Application of the Environment to the AC97 85
6.1 Overview of the AC97 . 85

6.1.1 AC-Link Interface . 86
6.2 Verification components . 88

6.2.1 Driving the inputs of the AC97 audio codec 88
6.2.2 Collecting data items from the AC97’s inputs and outputs 90
6.2.3 Evaluating the results of the test . 92
6.2.4 Agent manager . 92
6.2.5 Summary of the verification components 93

6.3 Test cases . 94
6.3.1 First test: Testing the DUT’s registers 94
6.3.2 Second test: Testing the Digital to Analog functionality 95
6.3.3 Third test: Testing the Analog to Analog functionality 97
6.3.4 Fourth test: Testing the Analog to Digital functionality 99
6.3.5 Automatization of the environment . 100

6.4 Conclusion . 100

7 Conclusion 103
7.1 Summary of the developed work . 103
7.2 Features and results of the concluded work . 104

CONTENTS xi

A UVM Guide for Beginners 105
A.1 Introduction . 105
A.2 The DUT . 107
A.3 Defining the verification environment . 108

A.3.1 UVM Classes . 110
A.3.2 UVM Phases . 111
A.3.3 UVM Macros . 112
A.3.4 Typical UVM class . 113
A.3.5 SimpleAdder UVM Testbench . 114

A.4 Top Block . 115
A.5 Transactions, sequences and sequencers . 118

A.5.1 Sequence . 121
A.5.2 Sequencer . 122

A.6 Driver . 124
A.6.1 Creating the driver as a normal testbench 126
A.6.2 Implementing the UVM driver . 128

A.7 Monitor . 131
A.7.1 TLM ports . 134

A.8 Agent . 137
A.9 Scoreboard . 139
A.10 Env . 142
A.11 Test . 144
A.12 Running the simulation . 146

xii CONTENTS

List of Figures

2.1 Generic testbench . 6
2.2 Direct testing progress [13, p.6] . 7
2.3 Random testing progress [13, p.8] . 7
2.4 Structured testbench . 8
2.5 Evolution of verification methodologies . 10
2.6 Typical UVM testbench . 11
2.7 Partial UVM class tree . 13
2.8 Partial list of UVM phases . 14
2.9 Port-export communication . 17
2.10 Analysis port communication . 19
2.11 Representation of a socket communication with an initiator and a target component 20
2.12 Socket communication with an initiator, a passthrough and a target component . . 20

3.1 Applications of a possible X-PHY . 24
3.2 X-PHY basic lane . 24
3.3 States of X-PHY . 25
3.4 Representation of 3 different situations for a trade-off between power and perfor-

mance . 25
3.5 X-PHY with 3 lanes . 26
3.6 An UVM verification environment for the receiver of X-PHY 27
3.7 An UVM testbench with 2 instances of the same agent for a X-PHY device with 2

Rx . 28
3.8 An UVM verification environment with support for agent configuration 29
3.9 An UVM verification environment with support for an agent manager 30
3.10 Typical topology for an I2C interface . 31
3.11 Representation of a start and stop condition on an I2C bus 31
3.12 Representation of an I2C read operation . 32
3.13 Representation of an I2C write operation . 32
3.14 Representation of an I2C write operation of 2 bytes 32
3.15 Representation of an I2C write operation without slave acknowledgement 33
3.16 Representation of a typical I2C timing diagram 33
3.17 Serial and parallel interfaces created for the I2C device 34
3.18 Class tree of the created components for a possible I2C testbench 38
3.19 Overview of the created SOC . 39
3.20 Activating the low-speed lane of the SOC . 40
3.21 Sending sound samples to the controller . 40
3.22 Activating the high-speed lane of the SOC . 40
3.23 Sending video samples to the controller . 41

xiii

xiv LIST OF FIGURES

3.24 Testbench for one I2C interface . 42
3.25 Testbench for two I2C interfaces . 43
3.26 Testbench for the SOC with an agent manager 44
3.27 Complete testbench for the SOC . 44
3.28 Testbench for the SOC with Agent Slave 2 disabled 45
3.29 Testbench for the SOC with Agent Slave 1 disabled 45

4.1 A top level view of the verification environment 48
4.2 A top level view of the verification environment 49
4.3 A top level view of a slave agent . 50
4.4 A top level view of a master agent . 51
4.5 A top level view of the verification environment with class names 51
4.6 Class tree of the created testbench . 53
4.7 Configuration blocks of the verification environment 55
4.8 Test block of the verification environment . 58
4.9 Env block of the verification environment . 59
4.10 Agent manager block of the verification environment 61
4.11 Sockets from the agent manager . 63
4.12 Agents of the verification environment . 66
4.13 A typical constitution of a master agent . 67
4.14 A typical constitution of a slave agent . 68
4.15 The broadcaster block . 70
4.16 The master monitor block . 72
4.17 The slave slave block . 73

5.1 Agent for testing an I2C slave interface . 78
5.2 Agent for testing an I2C master interface . 81
5.3 Overview of the complete verification environment for the SOC 82
5.4 Verification environment reconfigured for a revision of the SOC that features only

one I2C-Slave . 82
5.5 Verification environment reconfigured for a revision of the SOC that features one

I2C-Slave and one I2C-Master . 83

6.1 A simple model of LM4550 [11, p. 2] . 85
6.2 Codec Input frame of an AC-Link interface . 86
6.3 Codec Output frame of an AC-Link interface 87
6.4 LM4550 registers highlighted . 94
6.5 LM4550 Testbench for the registers . 95
6.6 LM4550 digital to analog functionality highlighted 95
6.7 LM4550 Testbench for the digital to analog functionality 96
6.8 LM4550 Testbench for the digital to analog functionality with the agent manager 97
6.9 LM4550 analog to analog functionality highlighted 97
6.10 LM4550 Testbench for the analog to analog functionality 98
6.11 LM4550 analog to digital functionality highlighted 99
6.12 LM4550 Testbench for the analog to digital functionality 99

A.1 Representation of the DUT’s inputs/outputs . 107
A.2 Operation of the DUT . 107
A.3 Typical UVM testbench . 109

LIST OF FIGURES xv

A.4 Partial UVM class tree . 110
A.5 Partial list of UVM phases . 111
A.6 SimpleAdder Final Testbench . 114
A.7 Relation between a sequence, a sequencer and a driver 119
A.8 State of the verification environment after the sequencer 122
A.9 Driver waveform . 128
A.10 State of the verification environment with the driver 130
A.11 State of the verification environment after the monitors 133
A.12 Port-export communication . 134
A.13 Analysis port communication . 135
A.14 State of the testbench after the agent . 138
A.15 Usage of FIFO in the scoreboard . 139
A.16 State of the testbench after the scoreboard . 141
A.17 State of the testbench after the env . 143
A.18 Final state of the testbench . 145

xvi LIST OF FIGURES

List of Tables

2.1 Sample code for ports and exports . 18
2.2 Sum up of TLM-1.0 ports . 19

3.1 I2C transaction . 35
3.2 I2C Agent Config . 36
3.3 I2C verification components . 38
3.4 I2C verification components . 41

4.1 Elements of the class generic_agent_config . 52
4.2 Elements of the class generic_agent_config . 56
4.3 Elements of the class generic_env_config . 57
4.4 Elements of the class generic_test . 58
4.5 Elements of the class generic_env . 60
4.6 Elements of the class generic_agent_manager 62
4.7 Elements of the class generic_info_block . 63
4.8 Elements of the class socket_slave_container 64
4.9 Elements of the class socket_slave_container 65
4.10 Elements of the class generic_agent_master . 67
4.11 Elements of the class generic_agent_slave . 69
4.12 Elements of the class broadcaster . 70
4.13 Elements of the class broadcaster . 72
4.14 Elements of the class broadcaster . 73

5.1 I2C-Master transaction . 80
5.2 Verification components for the testbench of the SOC 84

6.1 Transaction for generating values for the sine generator - ac97_trans_base 89
6.2 Transaction for generating values for the sine generator - ac97_trans_sine 90
6.3 Transaction for collecting transactions from the codec’s outputs - ac97_trans_ana 92
6.4 Elements of the AC97 testbench . 93

A.1 Sample code for ports and exports . 135
A.2 Sum up of TLM-1.0 ports . 136

xvii

xviii LIST OF TABLES

Abbreviations and Symbols

API Application Programming Interface
AVM Advanced Verification Methodology
DUT Device Under Test
EDA Electronic Design Automation
eRM e Reuse Methodology
HDL Hardware Description Language
HVL Hardware Verification Language
IEEE Institute of Electrical and Electronics Engineers
OVM Original Verification Methodology
PSL Property Specification Language
PHY Physical Layer of the OSI model
SOC System on a Chip
RTL Register-transfer level
RVM Reuse Verification Methodology
TLM Transaction Level Modeling
URM Universal Reuse Methodology
UVM Universal Verification Methodology
VHDL VHSIC Hardware Description Language
VMM Verification Methodology Manual

xix

Chapter 1

Introduction

During the last decades, electronic circuits have grown in complexity and in production costs

which compelled engineers to research and develop new methods to verify the electronic design

in more comprehensive, detailed and efficient ways.

The UVM methodology is one of the results of the increasing need of digital verification.

It is designed in a way that allows to structure a verification environment in a reconfigurable

architecture, so it can be possible to reuse components of the same environment across multiple

technologies. This methodology is an industry standard recognized by Accellera System Initiative

and it’s comprised of a library for the SystemVerilog language (IEEE 1800) and a set of verification

guidelines.

One of the main advantages in reusing components from different verification environments,

consists in reducing the set up time of the verification of a new project, since it isn’t needed to

rebuild the reused components. Furthermore, devices that fall under the same category sometimes

share similarities in their core architecture and, as a result, their verification environment can also

share the same similarities. By studying these similarities, it is possible to develop a verification

environment, focused in a special category of devices, which include the necessary features to be

"ready to use", in a way that it is only required to add the components specific to each model while

reusing the available infrastructure.

This project is targeted to a category of high-speed communication protocols developed by

an EDA company, Synopsys. The purpose of this work is to take advantage of the best features

of UVM and develop a reconfigurable verification environment that supports multiple communi-

cation protocols with minimal development effort. The project will start with the analysis of an

existing verification environment used in a specific technology by Synopsys and then followed by

an analysis of the verification techniques that could be used across different protocols.

So the goals defined for this project are:

• Analysis of an existing verification environment and removal of all design logic specific to

the original protocol

• Revision of the verification environment in order to support multiple protocols

1

2 Introduction

• Creation of generic blocks to support the revised environment

• Configuration and application of the generic environment to another existent protocol

From this disseration, it will result a well documentated verification environment, written in

SystemVerilog and using the UVM methodology, that establishes an infrastructure which covers

the core architecure of the high-speed communication protocols used by Synopsys.

During the development of the project, it was also created an UVM guide for beginners to

this methodology. The guide includes a technical explanation of UVM and it is accompanied by

a code example to serve as an example on how to build a complete verification environment with

this methodology. It can be found in the appendix A of this document.

All the information about the project and the UVM guide can be consulted in the website built

for this dissertation: http://colorlesscube.com/

1.1 Context

This dissertation was proposed by Synopsys Portugal and it was carried out as part of the Master’s

Degree in Electrical and Computer Engineering of the Faculdade de Engenharia da Universidade

do Porto (FEUP).

The project was developed within the context of Synopsys’ work with high-speed communi-

cation protocols and it is focused on devices that adopt these technologies.

Synopsys is one of the leading companies in the electronic design automation industry. Two of

the most well known Synopsys’ tools include Design Compiler, a logic synthesis tool, and VCS,

a Verilog and SystemVerilog compiler. The later one was used as a main tool for this dissertation.

The offices of Synopsys Portugal in which this project took place are located at Maia and the

the team behind the project was constituted by:

• The author of this document: Pedro Araujo

• Faculty Supervisor: Professor José Carlos Alves

• Company Supervisors: Luis Cruz & Domingos Terra

1.2 Structure of the document

This document presents the following structure:

• Chapter 2 provides some background regarding the subjects of hardware description lan-

guages, the need for hardware verification languages, the motivation behind verification

methodologies and it also provides a technical overview of the Universal Verification Method-

ology.

1.2 Structure of the document 3

• Chapter 3 presents a study of the devices targeted by this thesis and some situations that the

verification environment has to support in order to fully verifiy this category of devices. In

addition, a custom device was created in order to demonstrate the features of the environ-

ment.

• In chapter 4, the developed verification environment is described in detail, accompanied by

the documentation of each class and the explanation of the design decisions taken during

the conception of the project.

• Chapter 5 represents an application of the verification environment to the custom device

created in chapter 3.

• Chapter 6 details the implementation of the same verification environment but to a different

device, a model of the audio codec AC97

• Chapter 7, which is the final chapter of this document, presents a summary of the developed

work throughout the semester and some conclusions.

• The appendix A presents the beginner’s guide created during this dissertation.

4 Introduction

Chapter 2

State of the art

Technology has advanced a long way and become increasingly complex. Its foundations started

with computers whose logic was maintained by valves and that eventually moved to microscopic

devices, like transistors.

In the early beginnings, electronic systems were designed directly at the transistor level by

hand, but due to the increasingly complexity of electronic circuits since the 1970s [8], it became

unpractical to design the core logic directly at the transistor level, so circuit designers started to de-

velop new ways to describe circuit functionality independently of the electronic technology used.

The result was the Hardware Description Languages and the era of Electronic Design Automation

was born.

Hardware description languages are languages that are used to define the behavior and the

structure of digital integrated circuits before they are translated into their own architecture. These

kind of languages enable the modeling of a circuit for posterior simulation and, most importantly,

translation into a lower level specification of physical electronic components.

A hardware description language resembles a typical programming language consists in a

textual description of expressions and control structures and although they both share some sim-

ilarities, they are not the same. One main difference is that HDL code is translated concurrently,

which is required in order to mimic hardware, and while programming languages, after compi-

lation, are translated into low level instructions for the CPU to interpret, HDL specifications are

translate to digital hardware, so using hardware description languages requires a different mindset

than using programming languages.

Nowadays, hardware description languages are the prevailing way of designing an integrated

circuit, having superseded schematic capture programs in the early 1990s, and became the core of

automated design environment. [10, p.15-1]

2.1 Hardware Description Languages

VHDL and Verilog are the two most popular HDL standards. [5] Verilog was created as a propri-

etary language by Phil Moorby and Prabhu Goel between 1983 and 1984 and it is formally based

5

6 State of the art

in the C language. Cadence bought the rights of the language in 1989 and made it public in 1990.

Eventually, IEEE adopted it as a standard in 1995 (IEEE 1364).

On the other hand, unlike Verilog which was originally designed to be used as a proprietary

tool, VHDL was intentionally designed to be a standard HDL. It was originally developed on

behalf of the U. S. Department of Defense between 1983 and 1984 but only released in 1985. It is

based on Ada programming language and it was adopted as a standard IEEE 1076 in 1978. [10,

p.15-3]

2.2 Functional Verification

Hardware description languages are tools that help engineers to easily specify abstract models of

digital circuits to translate them into real hardware, but after the design is complete, another issue

becomes noticeable: how can a designer know that the design works as intended?

This brings up the need for verification. Verification is defined as a process to demonstrate

the functional correctness of a design. [4, p.1] This process is done by the means of a testbench,

an abstract system that provides stimuli to the inputs of the design under verification (DUV) and

analyses its behavior. A verification environment is represented in the figure 2.1.

 Device

 Under

Veri cation

Testbench

Figure 2.1: Generic testbench

One of the most common uses of a testbench is to show that a certain design implements the

functionality defined in the specification. This task is known as functional verification. Normally,

the testbench implements a model of the functionality that the designer wants to test and it is

responsible to compare the results from that model with the results of the design under test. But

it is important to take in account that functional verification can show that a design meets the

specifications that have been verified but it cannot prove it. [4, p.2]

2.2 Functional Verification 7

The traditional approach to verification relies on directed test. Verification engineers conceive

a series of critical stimulus, apply them directly to the device under test (DUT) and check if the

result is the expected one. This approach makes steady progress and produces quick initial results

because it requires little effort for setting up the verification infrastructure. So given enough time,

it maybe possible to write all the tests needed to cover 100% of the design. This scenario is

represented in the figure 2.2.

100%

Time

C
o
v
e
ra
g
e

Figure 2.2: Direct testing progress [13, p.6]

But as the design grows in size and complexity, this becomes a tedious and a time consuming

task. Most likely, there will be not enough time to cover all the tests needed in a reasonable amount

of time and there will be bugs that the verification engineer won’t be able to predict. So, random

stimuli help to cover the unlikely cases.

However, in order to use random stimuli, there is the need of automating a process to generate

them and there is also the need of a block that predicts, keeps track of the results and that analyses

them: a scoreboard. Additionally, when using random stimulus, it will be needed to check what

cases were covered by the generated stimuli, so the testbench will need functional coverage as

well. Functional coverage is the process of measuring what space of inputs have been tested, what

areas of the design have been reached and what states have been visited. [13, p.13]

This kind of testbench requires longer time to develop, causing an initial delay in the start of

the verification process. However, random based testing can actually promote the verification of

the design by covering cases not achieved with directed tests, as seen in the figure 2.3

100%

Time

C
o
v
e
ra

g
e

Directed Test

Random

 Test

Figure 2.3: Random testing progress [13, p.8]

8 State of the art

2.3 Hardware Verification Languages

In the previous section, it was mentioned some features that a verification environment must have:

a stimulus generator, a functional coverage block, a scoreboard. However, it needs a block to drive

the generated stimulus to the DUT and a block that listens to the communication bus, so that the

responses of the DUT can be driven to the scoreboard block and to the functional coverage block.

A representation of this structured testbench can be seen in the figure 2.4.

D
U
T

Testbench

Driver

Monitor

Stimulus

Generator

Scoreboard
Functional

Coverage

Figure 2.4: Structured testbench

As testbenchs grow and become more complex, the verification process might be a more re-

source consuming task than the design itself. Today, in the semiconductor industry, verification

takes about 70% of the design effort and the number of verification engineers is twice the number

of RTL designers in the same project. After a project is completed, the code of the testbench takes

up to 80% of the total volume code. [4, p. 2]

As the circuit complexity grows, the verification process increases in complexity as well and

become a very important and critical part of the project. However, the typical HDL aren’t able

to cope with the complexity of today’s testbenches. Complex data structures, application of con-

straints to the random stimulus, presence of multiple functional blocks and functional coverage,

are all examples of features that aren’t available in the standard HDLs used for specification,

namely in Verilog and in VHDL, as these more focused in creating a model of a digital design

than programming verification. [7]

In order to solve this problem, Hardware Verification Languages (HVL) were created. The

first one to be created was Vera in 1995. It was an object-oriented language, originally propri-

etary, designed for creating testbenchs for Verilog. The language was bought in 1998 by Synopsys

and released to the public in 2001 as OpenVera. OpenVera has support for high-level data struc-

tures, constraint random variables and functional coverage, which can monitor variables and state

transitions, and Synopsys also added support for assertions capabilities.

In 1997, a company named Verisity created the proprietary language e. Like OpenVera, it is

also object-oriented and feature-wise, it is very similar to Vera.

2.4 Verification Methodologies 9

IBM also developed its own verification language, Property Specification Language. It is more

narrower than OpenVera or e and it is designed to exclusively specify temporal properties of the

hardware design. [7]

Eventually, the features of some languages like, OpenVera and PSL, were merged to Verilog

and it was created a new language, SystemVerilog. SystemVerilog supports a variety of operators

and data structures, as well constrained random variables, functional coverage checking and tem-

poral assertions. This new language was adopted as a standard IEEE 1364 in 2005 and is now the

most used verification language in the industry. [10, p. 15-17]

2.4 Verification Methodologies

The adoption of verification languages eased the process of verification but there was no con-

sensus in the proper use of a verification language. In the attempt of helping to deploy the right

use of a verification methodology, Verisity Design (now Cadence Design Systems) published in

2000 a collection of the best practices for verification targeted to the users of e language. Named

vAdvisor, it just consisted in a package of verification patterns in HTML format and it covered

many aspects like coverage modeling, self-checking testbenches and stimuli creation. [9, p. xvii]

In 2002, the same company revised vAdvisor and created the first verification library, the e Reuse

Methodology (eRM). It was a big step because it included fundamental examples like sequences,

objection mechanisms and scoreboards. [14]

In order to compete with Verisity Design, Synopsys presented in 2003 the Reuse Verifica-

tion Methodology (RVM) for Vera verification language. The most notable contribution of RVM

was the introduction of callbacks, that was inspired from software design patterns and adapted

to verification languages. Eventually, RVM was ported from Vera to SystemVerilog to create the

Verification Methodology Manual (VMM). [9, p. xviii]

Until this point in time, both verification methodologies had been proprietary and it was only

in 2006 that it was introduced the first open source verification methodology, the Advanced Veri-

fication Methodology (AVM) from Mentor Graphics. [6] This library incorporated the concept of

Transaction-Level Modeling from SystemC.

In 2005, after the acquisition of Verisity, Cadence started, as well, to port eRM to the standard

of hardware verification languages, SystemVerilog. The result was the open source methodology,

Universal Reuse Methodology (URM) in 2007.

However, in the joint task of merging the best features of each methodology, in 2008, Cadence

and Mentor Graphics integrated both URM and AVM into a single open source methodology, the

Open Verification Methodology (OVM). This collaborative effort ended up to be a good solution,

because not only unified the libraries and the documentation but also, due to the open source

nature, users could make their own contributions to the methodology. [9, p. xvii]

10 State of the art

Later on, Accellera group decided to adopt a standard for verification methodologies and OVM

was chosen as basis for this new standard and together, with Synopsys’ VMM contributions, a new

methodology was created: the Universal Verification Methodology (UVM). [1] A sum up of the

evolution of verification methodologies is represented in figure 2.5.

2000 2002 2004 2006 2008 2010

vAdvisor eRM

RVM VMM

AVM

URM

OVM UVM

Figure 2.5: Evolution of verification methodologies

2.5 The Universal Verification Methodology

The UVM methodology is provided as an open-source library directly from the Accellera website

and it should be compatible with any HDL simulator that supports SystemVerilog, which means

it is highly portable. UVM is also based on the OVM library, this provides some background and

maturity to the methodology. These two points are two of the main reasons for industry approval

of the methodology.

Another key feature of UVM includes reusability. In a traditional testbench, if the DUT

changes, engineers would redo the testbench completely. This process takes some effort but most

of the times, if the testbench is correctly programmed, some blocks of it could be reused for the

new testbench.

On other occasions, under the same DUT, verification engineers might want to apply a different

test or change the kind of stimuli sent to the DUT. If the engineer doesn’t take in mind that the

test might change, he might end up revising the entire testbench. The lack of portability and

documentation of the testbench might lead to a complete revision of the testbench without any

margin for reusability.

UVM also addresses these kind of situations and specifies an API and guidelines for a standard

verification environment. This way, the environment is understood by any verification engineer

that understands the methodology and it becomes easily modifiable.

2.5 The Universal Verification Methodology 11

2.5.1 UVM Overview

The structure of an UVM environment is very similar to the testbenches mentioned previously.

It features the most common components, like monitors, drivers and scoreboards, as well other

classes that help to standardize testbenches across applications. A typical UVM environment is

represented in the figure 2.6.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

Figure 2.6: Typical UVM testbench

In the represented testbench, there is a device under test (DUT) and it is intended to interact

with it in order to test its functionality, so there is the need to stimulate it. To achieve this, there

will be a block, that generates sequences of data to be transmitted to the DUT, named sequencer.

Information about the sequencer can be found in the appendix A.5

Usually sequencers are unaware of the details of the communication protocol, and are respon-

sible for generating generic sequences of data to another block that handles the communication

with the DUT. This block is called the driver. The appendix A.6 details the functionality of the

driver.

While the driver maintains activity with the DUT, by feeding it data generated from the se-

quencers, it doesn’t do any validation of the responses to the stimuli. The testbench needs another

block that listens to the communication between the driver and the DUT and that evaluates the

responses from the DUT. This block is the monitor. More information about the montor can be

consulted in the appendix A.7.

Monitors sample the inputs and the outputs of the DUT, they try to make a prediction of the

expected result and send the prediction and result of the DUT to another block, the scoreboard,

12 State of the art

in order to be compared and evaluated. More information about the scoreboard can be read in the

appendix A.9.

The components of the UVM environment communicate between each other by using the

Transaction Level communication. This communication will be address later in sections 2.5.6 and

2.5.7

All these blocks constitute a typical system used for verification and it is the same structure

used for UVM testbenches. Usually, sequencers, drivers and monitors compose an agent. An

agent and a scoreboard compose an environment. All these blocks are controlled by a higher level

block denominated test. The test block controls all the blocks and sub-blocks of the testbench.

This means that just by changing a few lines of code, it is possible to add, remove and override

blocks in the testbench and build different environments without rewriting the whole test.

To illustrate the advantage of this feature, imagine a situation where a DUT that uses SPI for

communication is being tested. If, by any chance, we want to test a similar DUT but with I2C

instead, it would just need to add a monitor and a driver for I2C, and override the existing SPI

blocks, while keeping the sequencer and the scoreboard.

The current section gave an overview about the composition of an UVM environment. How-

ever, a deeper explanation of the UVM API will be provided in the following sections:

• The section 2.5.2 will explain the most important classes of the methodology

• The phases of each class will be described in section 2.5.3

• Each class has functionalities that are implemented by the usage of macros and the section

2.5.4 will explain the most important ones

• The section 2.5.5 illustrates the code for a generic UVM component

• The sections 2.5.6 and 2.5.7 refer to the Transaction Level communication between compo-

nents

2.5.2 UVM Classes

The example from chapter 2.5.1 demonstrates one of the great advantages of UVM. It is very

easy to replace components without having to modify the entire testbench, but it is also due to

the concept of classes and objects from SystemVerilog. In UVM, all the mentioned blocks are

represented as objects that are derived from the already existent classes.

2.5 The Universal Verification Methodology 13

A class tree of the most important UVM classes can be seen in the figure 2.7. [2]

uvm_void

uvm_object

uvm_report_objectuvm_transaction

uvm_sequence_item

uvm_sequence

uvm_phase uvm_con guration

uvm_component

uvm_sequencer

uvm_driver

uvm_monitor

uvm_agent

uvm_scoreboard

uvm_env

uvm_test

Figure 2.7: Partial UVM class tree

The data that travels to and from our DUT will stored in a class derived either from uvm_sequence_item

or uvm_sequence. The sequencer will be derived from uvm_sequencer, the driver from uvm_driver,

and so on.

Every each of these classes already have some useful methods implemented, so that the de-

signer can only focus on the important part, which is the functional part of the class that will verify

the design. These methods are detailed in the next sections.

14 State of the art

2.5.3 UVM Phases

All the mentioned classes in chapter 2.5.2 have simulation phases. Phases are ordered steps of

execution implemented as methods. When a new class is derived, the simulation of the testbench

will go through these different steps in order to construct, configure and connect the testbench

component hierarchy.

The most important phases are represented in figure 2.8. [1, p.48]

build_phase

connect_phase

run_phase

report_phase

Figure 2.8: Partial list of UVM phases

• The build phase is used to construct components of the hierarchy. For example, the build

phase of the agent class will construct the classes for the monitor, for the sequencer and for

the driver.

• The connect is used to connect the different sub components of a class. Using the same

example, the connect phase of the agent would connect the driver to the sequencer and it

would connect the monitor to an external port.

• The run phase is the main phase of the execution, this is where the actual code of a simula-

tion will execute.

• The report phase is the phase used to display the results of the simulation.

There are many more phases but none of them are mandatory. If a particular class is not

needed, it is possible to omit it and the compiler will just ignore it.

2.5 The Universal Verification Methodology 15

2.5.4 UVM Macros

Another important aspect of UVM are the macros. These macros implement some useful methods

in classes and in variables. They are optional, but recommended. The most common ones are:

• ‘uvm_component_utils - This macro registers the new class type. It is usually used when

deriving new classes from uvm_component.

• ‘uvm_object_utils - This macro it is similar to the macro ‘uvm_component_utils but it is

used with classes derived from uvm_object.

• ‘uvm_field_int - This macro registers a variable in the UVM factory and implements some

functions like copy(), compare() and print().

• ‘uvm_info - This a very useful macro to print messages from the UVM environment during

simulation time.

• ‘uvm_error - This macro responsible for sending messages with an error tag to the output

log.

These are the most used macros, their usage is the same for every class, but there are more

macros available in the UVM API. [2, p. 405]

16 State of the art

2.5.5 Typical UVM class

A typical UVM class has the structued listed in code 2.1.

1 c l a s s g e n e r i c _ c o m p o n e n t ex tends uvm_component ;
2 ‘ u v m _ c o m p o n e n t _ u t i l s (g e n e r i c _ c o m p o n e n t)
3
4 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 / / ∗∗ V a r i a b l e s
6 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
7 / / The v a r i a b l e s needed f o r t h e c l a s s go h e r e
8
9 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

10 / / ∗∗ C o n s t r u c t o r
11 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12 f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
13 super . new (name , p a r e n t) ;
14 endfunc t ion : new
15
16 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 / / ∗∗ Ph as e s
18 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
20 super . b u i l d _ p h a s e (phase) ;
21 / / Code f o r c o n s t r u c t o r s goes h e r e
22 endfunc t ion : b u i l d _ p h a s e
23
24 f u n c t i o n void c o n n e c t _ p h a s e (uvm_phase phase) ;
25 super . c o n n e c t _ p h a s e (phase) ;
26 / / Code f o r c o n n e c t i n g components goes h e r e
27 endfunc t ion : c o n n e c t _ p h a s e
28
29 ta sk r u n _ p h a s e (uvm_phase phase) ;
30 / / Code f o r s i m u l a t i o n goes h e r e
31 endtask : r u n _ p h a s e
32
33 f u n c t i o n void r e p o r t _ p h a s e (uvm_phase phase) ;
34 / / Code f o r showing s i m u l a t i o n r e s u l t s goes h e r e
35 endfunc t ion : r e p o r t _ p h a s e
36 e n d c l a s s : g e n e r i c _ c o m p o n e n t

Code 2.1: Code for a generic component

The line 2 presents the macro for registering the component in the UVM environment, lines

11 to 13 represent the class constructor used to intialize the objects and variables from the class,

and from line 18 is placed the functions and the tasks for the UVM phases described in section

2.5.3.

2.5 The Universal Verification Methodology 17

2.5.6 TLM-1: Ports

The first step in verifying a RTL design is defining what kind of data should be sent to the DUT.

While the driver deals with signal activities at the bit level, it doesn’t make sense to keep this level

of abstraction as we move away from the DUT, so the concept of transaction was created.

A transaction is a class object, usually extended from uvm_transaction or uvm_sequence_item

classes, which includes the information needed to model the communication between two or more

components.

Transactions are the smallest data transfers that can be executed in a verification model. They

can include variables, constraints and even methods for operating on themselves. Due to their high

abstraction level, they aren’t aware of the communication protocol between the components, so

they can be reused and extended for different kind of tests if correctly programmed.

An example of a transaction could be an object that would model the communication bus of

a master-slave topology. It could include two variables: the address of the device and the data

to be transmitted to that device. The transaction would randomize these two variables and the

verification environment would make sure that the variables would assume all possible and valid

values to cover all combinations.

Now, another question arises: how are transactions transported between components? The

answer is: through TLM. Transaction Level Modeling and it’s a high-level approach to modeling

communication between digital systems. TLM provides a set of communication interfaces that

can be used to connect different components at the transaction level by isolating them in the

environment. This promotes reusable components and minimizes the time required to build a

verification environment. [3, p. 9]

There are two kinds of TLM communication interfaces: TLM-1 and TLM-2.0. This chapter

will focus on TLM-1 but more information about TLM-2.0 can be consulted later on chapter 2.5.7.

The TLM-1 is represented by two main aspects: ports and exports. A TLM port defines a

set of methods and functions to be used for a particular connection, while an export supplies the

implementation of those methods. Ports and exports use transaction objects as arguments.

Figure A.12 is possible to see a representation of a TLM-1 connection.

producer consumer

top class

Figure 2.9: Port-export communication

The consumer implements a function that accepts a transaction as an argument and the pro-

ducer calls that very function while passing the expected transaction as argument. The top block

connects the producer to the consumer.

18 State of the art

A sample code is provided in table 2.1.

Table 2.1: Sample code for ports and exports

c l a s s t o p c l a s s ex tends uvm_component ;
. . .
f u n c t i o n void c o n n e c t _ p h a s e (uvm_phase phase) ;

. . .
p r o d u c e r . t e s t _ p o r t . c o n n e c t (consumer . t e s t _ e x p o r t) ;
. . .

endfunc t ion : c o n n e c t _ p h a s e
e n d c l a s s : t o p c l a s s

c l a s s p r o d u c e r ex tends uvm_component ;
u v m _ b l o c k i n g _ p u t _ p o r t # (t e s t _ t r a n s a c t i o n)

t e s t _ p o r t ;

. . .

ta sk run () ;
t e s t _ t r a n s a c t i o n t ;
t e s t _ p o r t . t e s t f u n c (t) ;

endtask : run
e n d c l a s s : p r o d u c e r

c l a s s consumer ex tends uvm_component ;
uvm_block ing_put_ imp #(t e s t _ t r a n s a c t i o n , consumer)

t e s t _ e x p o r t ;

. . .

ta sk t e s t f u n c (t e s t _ t r a n s a c t i o n t) ;
/ / Code f o r t e s t f u n c () h e r e . . .

endtask : t e s t f u n c
e n d c l a s s : consumer

The class topclass connects the producer’s test_port to the consumer’s test_export using the

connect() method. Then, the producer executes the consumer’s function testfunc() through test_port.

A particular characteristic of this kind of communication is that a port can only be connected

to a single export. But there are cases when we might be interested in having a special port that

can be plugged into several exports.

A third type of TLM port, analysis port, exists to cover these kind of cases.

An analysis port works exactly like a normal port but it can detect the number of exports

that are connected to it and every time a required function is asked through this port, all other

components whose exports are connected to an analysis port are going to be triggered.

2.5 The Universal Verification Methodology 19

Figure 2.10 represents an analysis port communication.

producer

consumer1

top class

consumer2

Figure 2.10: Analysis port communication

The usage of analysis ports is very similar to normal ports, so it is not provided a code example

like in the table 2.1. However, a brief summary of these ports and exports can be seen in the table

2.2.

Table 2.2: Sum up of TLM-1.0 ports

Symbol Type Port declaration
Port uvm_blocking_put_port #(transaction) port_name

Export uvm_blocking_put_imp #(transaction, classname) export_name
Analysis Port uvm_analysis_port #(transaction) analysis_port_name

20 State of the art

2.5.7 TLM-2.0: Sockets

In chapter 2.5.6, TLM-1 ports were analyzed but they have two major advantages: they don’t

support bi-directional communication and they don’t have passthrough objects. To solve these

problems, a new kind of connection was created: TLM-2.0, most known as sockets. A socket is

very similiar to a port or an export, as it is derived from the same class, but it provides a forward

and a backward path. [3, p. 24]

A socket connection is starts with a component that has initiator sockets and ends with another

component that has target sockets. Initiator sockets can only connect to target sockets and vice-

versa and each socket can only have a maximum of one connection. The figure 2.11 represents a

typical socket connection between a target and a initiator.

 Initiator

Component

 Target

Component

Forward Path

Backward Path

Figure 2.11: Representation of a socket communication with an initiator and a target component

It is also possible to implement passthrough socket in case it is desirable to relay the message

from a component to a subcomponent. This situation is represented on figure 2.12.

 Initiator

Component

 Target

Component

Initiator-passthrough

 socket

Target-passthrough

 socket

Figure 2.12: Socket communication with an initiator, a passthrough and a target component

These two cases represent the situations that will be using during the execution of this project.

2.6 Conclusion 21

2.6 Conclusion

Verification plays a big role in the conception of digital integrated circuits. Manual test cases are

not enough anymore to do a thorough verification of a digital design, so verification languages and

verification methodologies were created in order to assist engineers to test even the more unlikely

cases.

The current chapter presented an analysis to functional verification and to verification method-

ologies, and presented the most essential material used for the development of this thesis. A more

extensive explanation of UVM can be found in the Appendix A, this should provide an extra

explanation of some concepts talked over the next chapters.

22 State of the art

Chapter 3

Analysis of communication protocols

Nowadays, electronic consumer devices are more popular than ever, it’s a trend in constant grow-

ing and in great market need. One of the most popular electronic devices are the smartphones.A

smartphone is a small, battery operated, highly sophisticated computing and communication de-

vice. These are actually, one of the major market drivers for low power consumption and high

performance devices. So hardware designers need to take these aspects in mind during the devel-

opment of the hardware.

One of the aspects that can be improved in electronic devices in order to reduce its power con-

sumption it’s the efficiency of the interconnection between their internal components, for example,

between a camera and the CPU or the modem and the antenna. An ideal system-on-a-chip must

incorporate multiple high speed peripherals for inter-chip communication, while maintaining a

low power consumption. In response to this need, there have been many developments to optimize

communication interfaces at the physical layer for mobile applications.

3.1 X-PHY Overview

This thesis will focus on technologies developed by Synopsys for high-speed communication pro-

tocols. As the specific details of these technologies must remain confidental, we will use a generic

term demoninated of X-PHY to refer them.

The physical layer, commonly known as PHY, is the lowest layer of the OSI model. It is the

bridge between the physical medium and the link layer, so it is the ideal place to optimize power

consumption. A PHY serves as the base for other protocols at the higher layers that deal with other

purposes, such as data storage, data transfer, interaction with displays, etc. An optimized physical

layer for mobile applications, let’s assume X-PHY, could replace some of the communication

interfaces of other technologies in order to reduce the power consumption while preserving the

characteristics of that technology. The X-PHY is considered as a serial communication interface

in which the data is sent through differential pins.

23

24 Analysis of communication protocols

An example of the uses of X-PHY can be seen in the figure 3.1.

P
h
y
s
ic

a
l

L
a
y
e
r

X-PHY

M
-P

C
Ie

U
n
iP

ro

C
S
I-

2

P
ro

to
c
o
l

L
a
y
e
r

A
p
p
li
c
a
ti

o
n

C
a
m

e
ra

P
C

I
E
x
p
re

s
s

S
to

ra
g
e
 (

U
F
S
)

Figure 3.1: Applications of a possible X-PHY

In order to support a technology like PCI-Express on a mobile environment, a protocol layer,

like the M-PCIe, can be implemented on top of X-PHY. The usage of X-PHY as the physical

layer instead of the PCI Express PHY, could mean optimization in power consumption for mobile

applications while still providing a high-speed interface.

Another advantage of X-PHY besides an optimized power consumption, is the low pin count.

The most basic unit of the X-PHY is the lane, which can be a transmitter (TX) or a receiver (RX),

and each lane it is represented with just a pair of differential pins. This can be seen on the figure

3.2.

Tx Rx

Lane 0

Device A Device B
Tx+

Tx-

Rx+

Rx-

Figure 3.2: X-PHY basic lane

3.1 X-PHY Overview 25

As a consequence of preserving power, each lane supports multiple states. These states repre-

sent a trade-off between power and performance and can be dynamically adapted to the situation’s

need. The states of X-PHY are represented in figure 3.3.

Power

 Ratio

Sleep

 Low

Speed

 High

SpeedStall

Figure 3.3: States of X-PHY

For data transmission, there are two main states, Low-Speed (LS) and High-Speed (HS). This

availability of multiple power modes, allows the designer to have some versability on the approach

to the relation between the best performance and power consumption. This means that X-PHY

allows for situations where it is demanded a constant high-speed communication without caring

for power saving modes, as well for situations where it is important to preserve power.

The figure 3.4 represents 3 different situations that trade-off latency in communication with

power saving modes.

Power

 Ratio

 High

Speed Stall

 High

Speed Stall

 High

Speed

Time

Power

 Ratio

 High

Speed
Filler High

Speed
Filler High

Speed

Power

 Ratio

 High

Speed Stall

 High

Speed

Sleep

Time

Time

Situation 1:

⦁ Low latency

⦁ High power consumption

Situation 2:

⦁ Medium latency

⦁ Medium power consumption

Situation 3:

⦁ High latency

⦁ Low power consumption

Figure 3.4: Representation of 3 different situations for a trade-off between power and performance

26 Analysis of communication protocols

The situation 1 represents a situation where a constant high-speed communication is important

without taking in account power saving features. In this scenario, the interface fills the transmis-

sion with filler data in order to keep the high speed states even during periods of no data trans-

mission, making the communication more responsive. As a drawback, this causes a higher power

consumption.

To reduce it, instead of filling the gaps with filler data, the X-PHY can enter in a stall state that

saves up more power. The change of states, causes a small latency between the transmissions of

frames and thus making the communication less responsive. This is represented by situation 2.

The situation 3 represents a case even more optimized for power. After a frame has been

transmitted in high-speed, the interface goes into the sleep state, a state that can save more power

than stall. This introduces a higher latency because the interface, before going into the high-speed

state again, has to leave the sleep state and go through the stall state.

All these cases refer to operations with just one lane but X-PHY also supports multiple lanes

simultaneously. The operation mode with just the basic lane configuration states the basic func-

tionality of X-PHY and the configurations with multiple lanes add a common block shared by all

of them that manages all the lanes’ states, this block is denominated of Lane manager.

The figure 3.5 represents a possible situation of X-PHY with more than just one lane.

Tx Rx

Lane 0

Tx Rx

Lane 1

Device A Device B

Rx Tx

Lane 2Lane

manager
Lane

managerTx+

Tx-

Rx+

Rx-

Tx+

Tx-

Rx+

Rx-

Tx+

Tx-

Rx+

Rx-

Figure 3.5: X-PHY with 3 lanes

Another possible scenario would be 3 transmitters and 3 receivers on the same device, or even

just 4 receivers. Although all these lanes don’t share the same bus, they are dependent of each

other. For example, there may exist cases when the Lane 1 be must inactive while Lane 2 is

transmitting, or when Lane 3 is going to high-speed and all other low-speed lanes must switch to

high-speed too. This behavior is controlled by the lane manager.

All these situations were mentioned in order to understand the kind of configurations that a

verification environment has to support. These include: single lanes supporting multiple states;

multiple lanes being dependent of the states of other lanes; add or remove lanes dinamically in

order to test the behavior of the PHY with multiple configurations. An I2C or SPI interface are

much simpler and don’t need all this kind of complexity. An ideal verification environment would

provide the necessary infrastructure to deal with the described situations.

3.2 X-PHY Verification 27

3.2 X-PHY Verification

The main functionality of X-PHY was analyzed and with that analysis it is possible to take an

approach of a possible verification environment. At its essential level, a verification environment

emulates the functionality of the device under testing (DUT) and compares the result with the

DUT’s behavior.

Taking into account the figure the 3.2, the Device B (the receiver part) is considered as a

DUT for the situation that will follow. A testbench for this DUT, would need a component that

stimulates the device, a driver, and it would need a component that listens to the serial line in order

to emulate the functionality that we want to test, a monitor. It would also need another monitor

that would watch over the DUT’s behavior and a component that would compare the result from

the DUT and from the testbench, a scoreboard.

Testing a simple configuration like this is quite simple. The X-PHY is a communication pro-

tocol, so the basic functionality that the testbench needs to verify is if the data got correctly inter-

preted by the device. The testbench would compare the data obtained through the monitor watch-

ing the serial line with the data interpreted by the DUT and it would look for any mismatches.

Figure 3.6 represents an UVM environment that can be used to build the described testbench.

Rx

 Serial

Interface

 Parallel

Interface

Interface parallelserial Driver

Sequencer
Monitor

Serial

Monitor
Parallel

Agent

Scoreboard
Serial Parallel

Env

Test

DUT

Figure 3.6: An UVM verification environment for the receiver of X-PHY

As we are testing the Rx interface, the testbench will emulate the Tx side of the communi-

cation. This analysis to the verification of X-PHY will focus mostly on the receiver part, but the

process is the same for the trasmitter.

The sequencer is responsible for feeding transactions to the driver and it shouldn’t be con-

nected to any other block except to the driver, because only the monitors are responsible for the

evaluation of the DUT’s functionality, although the sequencer can hold information about the type

28 Analysis of communication protocols

of transactions that should be sent to the environment.

The UVM User’s Guide from Accellera [3, p.4] describes the agent as an abstract container,

that encapsulates a driver, a sequencer and a monitor, with the purpose of emulating the DUT.

These three blocks act independently in the testbench. And by putting them in a container, it

becomes easier to reuse them for other situations.

In order to demonstrate reusability, it is going to be assumed that the DUT now features two

similar, but independent, Rx interfaces. In order to verify the functionality of the second Rx

interface, we just need to duplicate the agent and the scoreboard. The figure 3.7 represents this

scenario.

Rx

 Serial

Interface

 Parallel

Interface

Interface parallel
serial Driver

Sequencer
Monitor

Serial

Monitor
Parallel

Agent

Scoreboard
Serial Parallel

Env

Test

DUT

Rx

 Serial

Interface

 Parallel

Interface

Interface parallel
serial

Monitor
Serial

Monitor
Parallel

Driver

Sequencer

Agent

Scoreboard
Serial Parallel

Figure 3.7: An UVM testbench with 2 instances of the same agent for a X-PHY device with 2 Rx

It is possible to notice that for this situation, the scoreboard is always closely related to the

agent so it would make sense to put it together with the monitors, the driver and the sequencer.

3.2 X-PHY Verification 29

It is now considered different DUTs: a DUT with one Rx interface (figure 3.6) and another

DUT with two Rx interfaces (figure 3.7).

A typical testbench would keep two separate Env blocks, an Env with only one agent and an-

other Env with two agents, but this would mean managing two separate tests. The ideal testbench

would be able to adapt itself to these two situations without reworking the whole environment. To

achieve this, each agent will feature a configuration block that will enable or disable the respective

agent depending on the device being tested.

This new verification environment is represented on figure 3.8.

Rx

 Serial

Interface

 Parallel

Interface

Interface parallel
serial Driver

Sequencer
Monitor

Serial

Monitor
Parallel

Agent

Scoreboard
Serial Parallel

Env

Test

DUT

Rx

 Serial

Interface

 Parallel

Interface

Interface parallel
serial

Monitor
Serial

Monitor
Parallel

Driver

Sequencer

Agent

Scoreboard
Serial Parallel

Agent

Config

Agent

Config

Figure 3.8: An UVM verification environment with support for agent configuration

The new agent config block will allow for a reconfigurable verification environment and with

just one line of code, in the test class, it will be possible to disable and enable agents manually.

This is useful for verifying DUTs like X-PHY that can have different configurations, as seen in

figures 3.2 and 3.5.

30 Analysis of communication protocols

Each agent now is composed by a driver, a sequencer, two monitors, a scoreboard and a con-

figuration block. This is enough to test a simple interface individually: the sequencer generates the

necessary sequences to be sent to the DUT and the driver takes cares of the communication with

the device by emulating the X-PHY’s states and trasmission frames. Meanwhile, the monitors take

care of collecting transactions from the communication to be evaluated by the scoreboard.

But if it is intended to test a DUT in which the lanes depend on each other, the testbench will

have to support a block that manages multiple agents at the same time in order to emulate the same

functionality. This is represented on figure 3.9.

Rx

 Serial

Interface

 Parallel

Interface

Env

Test

DUT

Rx

 Serial

Interface

 Parallel

Interface

Interface

Agent

Interface

Agent

Agent

Manager

Figure 3.9: An UVM verification environment with support for an agent manager

The agent manager will be connected to the drivers and to the monitors of each agent and it

will consist of a state machine that controls transmission requests from all the lanes.

As an example, assuming a hypothetical situation that in the DUT there is a resource shared by

both interfaces, like a clock generator, and assuming that the change of states of each lane would

depend on the system clock, the lane manager would control the access to this shared resource,

thus controlling the change of the states of each lane.

This would mean that if both lanes are transmitting in the high-speed state and one of them

would want to change it is state to low-speed, this lane would first make a request to the lane

manager and the lane manager in its turn would check for the usage of the shared resource and

give permission, or not, for the lane to change its state.

The envisioned testbench would support for multiple configurations just by changing a few

lines of code. The presence of an agent manager also allows for a dynamic reconfiguration of the

testbench during the execution of the test.

In order to demonstrate some of these features, it will be developed a device that will emulate

the features of X-PHY. For this device, it will be used an I2C interface instead of the interface X-

PHY. The following section will start with a brief overview of the I2C protocol before presenting

the example device.

3.3 I2C Overview 31

3.3 I2C Overview

The I2C is a synchronous communication protocol originally developed by Philips during the

1980s as a way to establish communication between several electronic devices, like microcon-

trollers, displays and sensors. It features a serial bus interface with a master-slave topology on top

of two physical wires. It is capable to reach speeds up to 100 Kbps (Standard-mode) and up to

400 Kbps (Fast-mode). [12, p.3]

The only physical lines available in a typical I2C communication are the serial data line (SDA)

and the serial clock line (SCL) and all I2C devices from the same network share same two lines.

The clock line is always generated from the master but the data line can be controller either by the

master or by the slave. A typical I2C topology is represented on figure 3.10.

Master Slave 1
scl

sda

Slave 2

Slave 3

Figure 3.10: Typical topology for an I2C interface

The communication on an I2C bus is always started by the master device which addresses to

the desired slave by an unique slave address. The I2C address has 7 bits and the maximum number

of nodes in the same network is thus limited to 127 different devices.

The master starts the communication by issuing a start condition and ends the communication

with a stop condition. The start condition occurs with the transition from high to low of the SDA

while the SCL line is in high state and the stop condition occurs with the transition from low to

high while the SCL line is pulled high. These conditions are represented on figure 3.11.

SCL

SDA

SCL

SDA

 Start

Condition

 Stop

Condition

Figure 3.11: Representation of a start and stop condition on an I2C bus

32 Analysis of communication protocols

After the start condition, the master transmits the address of the slave and the read/write bit,

depending on the type of operation that master desires to do, and waits for an acknowlegment

of the slave. If there is a slave with the transmitted address listening to the bus, the slave will

acknowledge the request and read, or write, a byte, from the bus and another acknowledge will

follow. The communication finally ends with the stop condition from the master.

A representation of a read operation (the R/W bit is 1) is shown in the figure 3.12. The top of

the figure represents the action of the master in the bus and on the bottom the action of the slave.

Master Start Address (7 bits) R/W

ACK Data (8 bits)

ACK Stop

Slave

Figure 3.12: Representation of an I2C read operation

It is possible to note that in this frame it is the master that acknowledges the data. In the I2C

protocol, the communication is done in blocks of 8 bits and the node that receives those 8 bits is

the one that send the acknowledgement to the bus. The first block of 8 bits is always sent by the

master, which is the slave address of 7 bits plus the read/write bit. The second block can be either

a write operation to a slave or a read operation from a slave.

So in figure 3.12 the master requests data to be read from the slave, by setting the bit R/W to 1,

and the slave sends a block of 8 bits of data. The master then confirms the reception of the block

by sending an ackowledgement signal.

Figure 3.13 represents a write operation (the R/W bit is 1). In this case, the master sends

8 bits of data to the slave and the slave has to confirm the reception of the data, so it sends an

aknowledgement signal.

Master Address (7 bits) R/W

ACKSlave

Data (8 bits)

ACK

Start Stop

Figure 3.13: Representation of an I2C write operation

It is also possible to transmit more than one byte of data in just one I2C frame. After the

ACK of the first data byte, instead of generating a stop condition the master just needs to send the

next byte, in case of the write operation, or wait for the next byte from the slave, in case of read

operation. This situation is represented in figure 3.14.

Master Address (7 bits) R/W

ACK

Data (8 bits)

ACKSlave

Data (8 bits)

ACK

Start Stop

Figure 3.14: Representation of an I2C write operation of 2 bytes

3.4 I2C Verification 33

If by any chance, in the beginning of the communication the send address isn’t recognized by

any slave (if there isn’t any acknowledgement in the line), the master assumes that there was no

communication and just retries again as it is represented in figure 3.15.

Master Address (7 bits) R/W

ACKSlave

Address (7 bits) R/WStart Start

Figure 3.15: Representation of an I2C write operation without slave acknowledgement

As an example, figure 3.16 shows a timing diagram for a typical I2C communication. The

address sent is 7’b1010110 and the master is accessing the slave in write mode (R/W is 1’b0). The

data received from the slave is 8’b11010010.

SCL

SDA

 Start

Condition

1 0 1 0 1 1 0

Slave Address

0

R/W

0

ACK

1 1 0 1 0 0 1 0

Data Stop

Condition

Figure 3.16: Representation of a typical I2C timing diagram

The next chapter will explain how a verification of a single I2C could be done.

3.4 I2C Verification

After studying how an I2C interface works, it is possible to draft an early verification plan for it.

This chapter will go through a possible verification plan for a single I2C slave and a single I2C

master and this plan will be used as a base model for the device created in section 3.5. This section

will mostly focus on the basic components needed for building a verification environment and a

summary of these components can be found by the end of the section.

In order to assist the verification process, a parallel interface will be added to the I2C devices.

This interface will permit to access the internal registers of the DUT, allowing for the testbench to

make a proper validation of the DUT’s operation. The pinouts of this interface can be inputs and

outputs at the same time.

34 Analysis of communication protocols

The interfaces available for each I2C device are represented on the figure 3.17.

 Serial

Interface

 Parallel

Interface

sda

scl

addr[7]

rw

ack

data[8]

start

stop

Figure 3.17: Serial and parallel interfaces created for the I2C device

The testbench for the slave interface will act as a master and the testbench for the master

interface will act as a slave, this means that it will be needed a driver that acts like as an I2C

master and another driver that acts as an I2C slave.

To listen to the communication bus, it will be needed a monitor that acts as a slave for both

cases. Another monitor to listen to the interface’s registers will be required and also a scoreboard to

compare the results from both monitors. These two components can be reused in both testbenches

as well.

There are three main parameters on an I2C communication: the slave address, the read/write

bit and the data. These three parameters will act as a starting point for the verification plan.

It will first be considered a slave I2C interface and then the document will move to the verifi-

cation of an I2C master.

3.4.1 Verifying an I2C slave

There are four main situations it is desirable to test:

• The slave has to acknowledge only to his address and completely ignore all the communi-

cations with other addresses

• The slave has to write into the bus when the read/write bit is equal to 1’b0 and read the bus

when the same bit is qual to 1’b1

• The slave cannot write into the bus unless at master’s request

• The data sent to the slave and sent by the slave, has to be correctly interpreted

Using these tests and the parameters mentioned previously, it was created a transaction that

will model the communication between the testbench and the DUT.

3.4 I2C Verification 35

The transaction is named i2c_trans and it is a class derived from uvm_sequence_item. The

structure of the transaction can be seen on the table 3.1.

Table 3.1: I2C transaction

Transaction: i2c_trans
Name Description Variable

Slave address The address to be sent in the I2C frame logic [6:0] slave_address
Read/write bit The bit that defines the type of operation logic rw
Data The 8 bit message sent through the bus logic [7:0] data

Number of retries
The number of times that the master tries to communication in
case the lack of ACK

int n_retries

This transaction is used by a driver that will build an I2C frame and interact with the DUT. The

driver is connected to a sequencer, named i2c_sequencer, which, on its turn, will take transactions

from another block, the i2c_sequence, and then pass along random transactions to the driver. More

information about the relationship between the sequences and the transactions can be consulted in

appendix A.5.

The driver will act as an I2C master device and it will belong to the class i2c_driver_serialmas-

ter. The run phase will go through these events:

1. Retrieve a random sequence from the sequencer

2. Set a start condition

3. Transmit the random address from the sequencer and the read/write bit

4. Wait for an acknowledgement for the slave

5. If there is an acknowledgement, it will transmit the data. If not, if not, it will retry the

number of times defined in the transaction

6. Set a stop condition

7. Report to the sequencer that the operation with the transaction is finished and repeat the

process

The slave address of each I2C slave interface is defined by the port addr of the parallel inter-

face. This port is accessed by a component in the testbench, usually the driver, that obtains the

address through a configuration block.

36 Analysis of communication protocols

The sequencer generates random transactions for the driver but there are cases when it’s desir-

able to force certain tests to the interface. The ideal class to define the values to be used on tests

is the test class. In order to pass values from the test class to the sequencer, a configuration block

will be created, the i2c_agent_config. This configuration block will be submitted to the UVM

configuration database, to be later retrieved to the sequencer.

The composition of the configuration block is very similar to the transaction and it will hold

values to force a type of test to the DUT. It is a class named i2c_config and it is represented in

table 3.2.

Table 3.2: I2C Agent Config

Agent config: i2c_config
Name Description Variable

Slave address The address to be sent in the I2C frame logic [6:0] slave_address
Read/write bit The bit that defines the type of operation logic rw
Data The 8 bit message sent through the bus logic [7:0] data

Number of retries
The number of times that the master tries to communication in
case of lack of ACK

int n_retries

Actual slave address
The actual address of the slave being tested. This address is
sent to the port addr of the parallel interface

logic [6:0] real_address

Agent active Variable that defines if the bit is active or not bit active_agent

And while the driver maintains activity on the bus, there will be a component listening to

the same activity. This component will be reacting to the driver’s action on the bus by em-

ulating the DUT’s behavior. This component will a monitor and it will belong to the class

i2c_monitor_serialslave. So it will go through these events:

1. Wait for a start condition

2. Collect the address and the read/write bit

3. If the address is a match, internally acknowledge the information (but it doesn’t change

anything on the bus), otherwise discard any further information

4. If the address was a match, store the 8 bit data traveled through bus into an empty transaction

5. Wait for a stop condition

6. Send the collected information to the scoreboard and repeat the process

There will also be a monitor that will be listening to the parallel interface of the device check-

ing how the DUT reacts to the driver: a monitor from the class i2c_monitor_registers. This moni-

tor will observe the internal events of the DUT and it will collect the data that is interpreted by it.

This means that the monitor be waiting for the DUT to recognize a stop condition internally, and

when it does, it will send the data interpreted by the DUT to the scoreboard. The scoreboard will

then compare both collected transactions to see if the DUT’s behavior matches with the modeled

behavior in the testbench.

3.4 I2C Verification 37

The scoreboard is represented by a class named i2c_scoreboard. This component is responsi-

ble for comparing the transactions collected by both monitors and report any mismatches on the

behavior of the DUT against the model of the testbench.

The verification of an I2C is similar to the verification planned previously with X-PHY, the

testbench will feature monitors watching the serial line and monitors watching over the parallel

interface to check the internal registers of the device.

3.4.2 Verifying an I2C master

The verification of an I2C master is very similar to the verification of an I2C slave, it is possible

to reuse most of the components except for the driver. The driver has to implement the function of

an I2C slave.

The driver will be a class of i2c_driver_serialslave and it will go these steps:

1. Request a random transaction from the sequencer, this transaction will contain information

about the 8 bit message and about the slave’s address

2. Wait for a start condition

3. Collect the address and the rw bit sent to the bus, if it is a match, send an acknowledge

4. Collect or send data depending on the RW bit

5. Wait for a stop condition and repeat the process

The rest of the components can be reused, it is not necessary to create new ones due to the

similarities between the I2C slave and I2C master interfaces.

38 Analysis of communication protocols

3.4.3 UVM verification components created for the I2C interfaces

To sum up, the table 3.3 represents all the verification components necessary for the verification

of an I2C interface (master and slave).

Table 3.3: I2C verification components

Block type Block class Parent class

Monitor I2C Serial Slave i2c_monitor_serialslave uvm_monitor
Monitor Register i2c_monitor_registers uvm_monitor

Scoreboard i2c_scoreboard uvm_scoreboard

Driver I2C Serial Master i2c_driver_serialmaster uvm_driver
Driver I2C Serial Slave i2c_driver_serialslave uvm_driver

Transaction i2c_trans uvm_sequence_item
Sequence i2c_sequence uvm_sequence
Sequencer i2c_sequencer uvm_sequencer

Agent config i2c_config uvm_object

The figure 3.18 represents a class tree of the created components.

uvm_void

uvm_object

uvm_report_objectuvm_transaction

uvm_sequence_item

uvm_sequence

uvm_phase uvm_con guration

uvm_component

uvm_sequencer

uvm_driver

uvm_monitor

uvm_agent

uvm_scoreboard

uvm_env

uvm_test

i2c_sequencer

i2c_driver_serialmaster

i2c_scoreboard

i2c_monitor_serialslavei2c_monitor_register

i2c_driver_serialslave

i2c_trans

i2c_sequence

i2c_con g

Figure 3.18: Class tree of the created components for a possible I2C testbench

These components will be used to build a verification environment of the device that will be

explained in section 3.5.

3.5 SOC Overview 39

3.5 SOC Overview

As it was already mentioned, this thesis is being developed within the context of Synopsys’ work

with communication protocols, so it was not possible to use a real industrial interface as a starting

point for the verification environment.

But in order to demonstrate the situations that the testbench has to support, it was created a

device denominated of SOC as a replacement to the interface.

For this device it’s considered a video-surveillance system of a room. The SOC features 3

I2C interfaces: one slave interface and two master interfaces. A fictional ultra-sound sensor and

a video camera would be connected to the slave interfaces. A fictional microcontroller would be

connected to the slave interface and it would constantly query for video and audio data from the

other devices.

The three interfaces will represent the different lanes of the X-PHY. The I2C slave will repre-

sent the RX lane while the other two will represent the TX lanes. The two I2C master interfaces

will operate at a different speeds: one of them will operate at 400 Kbit/s, representing a low-speed

lane, while the other will operate at 1 Mbit/s, representing a high-speed lane.

The device will feature a single clock that can only generate a certain frequency at a given

time, this means that both master interfaces will have to wait for one another in order to transmit

information.

The SOC is represented on figure 3.19.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Ultra-sound sensor

 (Slave)

Controller

 (Master)

400k

Video camera

 (Slave)

1M

low-speed

 lane

high-speed

 lane

Figure 3.19: Overview of the created SOC

In this scenario, a controller is a device that intends to collect information about the state of

the room, so it’s constantly querying the SOC for sound and video data. By default, the SOC is

collecting data from the ultra-sound sensor (low-speed lane), so when a read request comes from

the controller, it’s the data from the ultra-sound sensor that it’s sent to the controller.

By sending a write command to the bus, the controller can change the lane from the SOC that

it’s active. The write command with the data 0x01 activates the low-speed lane, while the write

command with the data 0x02 activates the high-speed lane.

In the figure 3.20 it’s represented a situation where the controller sends the 0x01 command to

the SOC, activating the low-speed lane.

40 Analysis of communication protocols

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Controller

 (Master)

Ultra-sound sensor

 (Slave)

Video camera

 (Slave)

low-speed

 lane

high-speed

 lane

Write cmd

 0x01

Figure 3.20: Activating the low-speed lane of the SOC

The SOC is now collecting sound samples from the ultra-sound sensor and the controller is

aware of the change of states that happened in the DUT, so it can start now to request for sound

samples from the sensor.

This situation is represented on figure 3.21.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Ultra-sound sensor

 (Slave)

Controller

 (Master)

Video camera

 (Slave)

low-speed

 lane

high-speed

 lane

 Request

sound sample

 Sending

sound samples

Figure 3.21: Sending sound samples to the controller

After the controller received some sound samples, it can find suspicious activity on the room

that is being surveilled. When this happens, it will start to collect video samples from the video

camera, so it will request a change of lane to the SOC. This is represented on figure 3.22.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Controller

 (Master)

Ultra-sound sensor

 (Slave)

Video camera

 (Slave)

low-speed

 lane

high-speed

 lane

Write cmd

 0x02

Figure 3.22: Activating the high-speed lane of the SOC

The high-speed lane will be activated and then the controller will start to request for video

samples, like in figure 3.23.

3.6 SOC Verification Plan 41

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Ultra-sound sensor

 (Slave)

Controller

 (Master)

Video camera

 (Slave)

low-speed

 lane

high-speed

 lane

 Request

video sample

 Sending

video samples

Figure 3.23: Sending video samples to the controller

To sum up, the created SOC will start by collecting data from the low-speed lane. At the same

time it will receive instructions through the controller lane. This lane is always active and it can

request the SOC to send video samples. Due to the fact that the clock is already being used by the

low-speed lane, this lane will have to be deactivated in order to activate the high-speed lane. The

SOC will cycle between the low-speed lane and the high-speed lane depending on the requests

made by the controller.

This behavior will be used as a model for the verification environment to be developed in this

thesis. The section 3.6 will identify potential features to be included in the verification environ-

ment and the chapter 4 will fully describe the developed environment.

3.6 SOC Verification Plan

The verification of this device aims for two main objectives: Verification of each I2C interface and

verification of the dependency between connected devices. This means that the data transmitted

and received by each I2C bus will have to be correctly interpreted by the DUT and that each

interface will have to respect the lane constraints defined in chapter 3.5

The components created in section 3.4 will be needed in order to verify the SOC. The table

3.4 presents all the components used for the I2C verification.

Table 3.4: I2C verification components

Block type Block class

Monitor I2C Serial Slave i2c_monitor_serialslave
Monitor Register i2c_monitor_registers

Scoreboard i2c_scoreboard

Driver I2C Serial Master i2c_driver_serialmaster
Driver I2C Serial Slave i2c_driver_serialslave

Transaction i2c_trans
Sequence i2c_sequence
Sequencer i2c_sequencer

Agent config i2c_config

These components will be used to design an approach to a testbench for the SOC.

42 Analysis of communication protocols

3.6.1 Testing the slave interface

For this situation, only one interface will be tested: the I2C Slave. This slave interface is the main

communication interface of the SOC, it is from where the whole device is going to be controlled,

so it is important to start building a verification system for this interface.

The verification for this situation is very similar to the verification seen on chapter 3.4. Com-

bining the described environment for the X-PHY verification on chapter 3.2 with the components

of chapter 3.4.1 it is possible to build a working environment like the one described in figure 3.24.

Interface 0 parallel
serial Driver

Sequencer
Monitor

I2C Serial Slave

Monitor
Register

Agent Master

Scoreboard
Serial Parallel

Agent

Con g 0

Env

Test

I2C Serial Master

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Figure 3.24: Testbench for one I2C interface

Using the monitor, the scoreboard, the agent config block, the sequencer and the I2C master

driver, it will be possible to build an agent that emulates an I2C Master device to interact with the

slave interface of the SOC.

The rest of the components will work as described in chapter 3.4.

3.6.2 Testing the slave interface and the low-speed lane

Another agent will be added to test one of the I2C-Master interfaces. This slave agent will created

by reusing the components created previously, a simple instantiation into a new agent will be

enough to replicate some of the intended functionality but for this interface it will be used a slave

I2C driver instead of a master one.

3.6 SOC Verification Plan 43

The figure 3.25 represents the two agents present in the testbench.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Interface 0 parallel
serial Driver

Sequencer
Monitor

I2C Serial Slave

Monitor
Register

Agent Master

Scoreboard
Serial Parallel

Env

Test

I2C Serial Master

Interface 1 parallel
serial

Agent

Config 0

Driver

Sequencer

I2C Serial Slave

Agent

Config 1
Scoreboard
Serial Parallel

Monitor Monitor
I2C Serial Slave Register

Agent Slave

Figure 3.25: Testbench for two I2C interfaces

In this figure, it is possible to see the utility of the bit active_agent available in the Agent Config

blocks. The two agents represent two different tests and the mentioned bit enables, or disables,

each agent from the testbench. This means that if it is not desirable to execute one of the tests, it

is very easy to disable one agent from the test without rewritting the whole testbench.

With agent master it is possible to test the I2C-Slave interface, and the slave agent was added

in order to test one of the master interfaces. The newest agent is very similar to the first one, except

for the driver, which is replaced in order to interact with the master interface.

At the moment, there are two agents testing the DUT at the same time. But these two agents

are independent of each other, which means that if, by any chance, the agent master generates a

transaction that drives the SOC to disable the low-speed lane and enable the high-speed test, the

current agent slave is rendered useless because the interface is not active.

Due to the nature of the agent master, by controlling the DUT configuration through the slave

interface, it contains crucial information about the DUT’s state of operation. That information

could be used to dinamically enable or disable agents. As an example, if the agent master writes

44 Analysis of communication protocols

the value 0x02 into the bus, the SOC will change its state of operation from low-speed to high-

speed. This information should be sent to a block that stays at the same level as the agents and

that controls them, an agent manager.

The figure 3.26 represents a testbench with an agent manager.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Env

Test

Interface 1

Interface 0

Agent Master

Agent

Manager

Agent Slave

Figure 3.26: Testbench for the SOC with an agent manager

The agent manager should also be able to automatically adapt itself to any number of agents

that it is necessay to add to the testbench.

3.6.3 Testing the slave interface and the low-speed and high-speed lanes

If it is desirable to test the remaining master interface as well, it’s only necessary to create a new

instance of the same slave agent used previously. The figure 5.3 represents the complete testbench

for the SOC.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Env

Test

Interface 1

Interface 0

Agent Master

Agent

Manager

Agent Slave 1

Interface 2

Agent Slave 2

Figure 3.27: Complete testbench for the SOC

In this situation, the agent manager enables and disables the slave agents automatically. The

default operation of the SOC is to collect sound samples from the low-speed lane, so if the agent

3.6 SOC Verification Plan 45

master generates request, the SOC makes a normal response. The figure 3.28 represents this

situation.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Env

Test

Interface 1

Interface 0

Agent Master

Agent

Manager

Agent Slave 1

Interface 2

Agent Slave 2

Write cmd

 0x01

Info about the

DUT's state

On

Off

Figure 3.28: Testbench for the SOC with Agent Slave 2 disabled

If a write cmd 0x01 is generated, the agent master will inform the agent manager which will

disable the agent slave 2.

However, if the agent master generates a request to activate the high-speed lane (this is, if a

write cmd 0x02 is generated), it will also inform the agent manager about this situation, which in

its turn will enable the agent slave #2 and disable the agent slave #1 (figure 3.29).

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

Env

Test

Interface 1

Interface 0

Agent Master

Agent

Manager

Agent Slave 1

Interface 2

Agent Slave 2

Write cmd

 0x02

Info about the

DUT's state

Off

On

Figure 3.29: Testbench for the SOC with Agent Slave 1 disabled

This is the expected behavior of the SOC as it was mentioned in 3.5. The agent manager

must have a state machine that matches the behavior of the DUT. It should be noted that the

agent manager does not have to disable agents, this was just an example. Each agent could have

programmed any other behavior, like waiting states or burst transmissions. It depends on the

engineer to decide what kind of behavior that the testbench should have.

46 Analysis of communication protocols

3.7 Conclusion

The current chapter gave an overview about some of the features that high-speed communication

protocols have and the kind of situations that a testbench should support in order to fully verify

the functionalities of those protocols.

A device denominated SOC was created to demonstrate the underlying architecture of the

devices that implement such high-speed protocols. This device also served to a model an approach

to a possible testbench capable of supporting this category of devices.

Some features that the testbench should support include:

• Each agent representing a test

• The ability to add or remove agents manually

• To let the testbench enable or disable agents automatically depending on the test being

executed to the DUT

• Each agent supports multiple states to be defined by the agent manager. As an example, in

the SOC, each agent only had two states: enable and disabled

• Support multiple DUT configurations. As an example, if the SOC had a third master I2C

interface, it would be easy to reuse the components that we already have in the testbench

and extend the agent manager to one more agent

• To force directed tests

This list will serve as points to be kept in mind while developing the testbench. The chapter 4

will provide an overview and documentation of the developed testbench.

Chapter 4

The Verification Environment

The previous chapter provided some of the situations that an ideal verification environment has to

handle in order to fully verify a device under test. By taking into account the analysis made to com-

munication protocols, it was created a new verification environment built on top of SystemVerilog

and UVM. This chapter will present the necessary documentation and the design decisions made

during the conception of the environment: the components, the relationship between them, how

they communicate and the work flow of the environment in order to adapt it to new devices.

The chapter will start by giving an overview of the testbench: the purpose of the testbench, the

components and the expected behavior. Then it will move to the description of each component:

a deep explanation of each component will be given, which will serve as a manual of the created

classes. And finally, it will end with the necessary steps to use the verification in other situations.

Some of the explanations are also included in the comments of the source code of the testbench.

The verification environment presented here is be a composition of classes and verification

guidelines studied under the scope of Synopsys’ work with communication protocols, so this might

not represent a true generic and universal approach to UVM testbenches.

4.1 Testbench Overview

As it was mentioned previously, the most basic unit of the testbench is the agent. An agent is

be composed of drivers, sequencers, monitors, scoreboards and configuration blocks and they all

represent a test being exercised to the DUT. This means that two different agents represent two

different tests.

It is possible to manually enabled and disabled each agent by modifiying the respective con-

figuration block. As a result, the tests done to the DUT can be easily changed without having to

rewrite the whole environment.

But an interesting feature is to let the environment to dinamically enable and disable each

agent during the execution of the test, without the intervention of the engineer. It would increase

the coverage of the test without having to worry with which test was being executed. This kind of

automatization is possible due to the introduction of an agent manager.

47

48 The Verification Environment

All these components establish the most basic structure of the intended verification environ-

ment. A top level view of the environment can be seen in figure 4.1.

Top

DUT

Agent #0

(Master)

In
te

rf
a
c
e

Env

Test

Agent #1

(Slave)

Agent #n

(Slave)

Env

Con guration

Agent #0

Con guration

Agent #1

Con guration

Agent #n

Con guration

Agent

Manager

Figure 4.1: A top level view of the verification environment

The agent manager is responsible for collecting information of certain agents in order to con-

trol others, so it is necessary to establish a master-slave relationship between the agents. A master

agent is an agent responsible for testing the core functionality of the device, like the interface with

registers. This agent sends information about the DUT’s state to the agent manager and the agent

manager enables and disable agents depending on that information.

As an example, it is considered an audio codec with 2 analog inputs (input #1 and input #2)

and 2 analog outputs (output #1 and output #2). Besides the analog interface, it is also assumed

that there is a digital serial interface that with access to the codec’s registers. In this scenario, there

would be 3 agents: a master agent that would be attached to the digital serial interface and two

slave agents that would attach to one analog input and one analog output.

The master agent would check if the serial interface would be operating correctly. This test

would mean writing consecutively into the registers and, as a result, changing the behavior of

the analog inputs and outputs. The slave agents would be attached to their own analog input and

output and they would generate an analog wave and verify the result in the output of the DUT.

If, by any chance, the master agent would generate a sequence that would program the DUT’s

register to disable the input #1 and the output #1, one of the agents would be rendered useless. For

that reason, the master agent would inform the agent manager about the situation and the agent

manager would disable the respective agent.

4.1 Testbench Overview 49

On the other hand, if the master agent would generate a sequence that would activate the

input #2 and the output #2, the other slave agent could be enabled in order to test the analog

inputs/outputs of the DUT.

This situation is represented on figure 4.2.

Top

DUT

Agent

Serial interface

In
te

rf
a
c
e

Env

Test

Agent

Analog Pair #1

Agent

Analog Pair #2

Env

Con guration

Agent

Con guration

Agent

Con guration

Agent

Con guration

Agent

Manager

Input #1: Off

Input #2: On

Off On

Figure 4.2: A top level view of the verification environment

Each agent is configured with the settings defined in Agent Configuration. This block holds

the virtual interface to be connected to the agent, it holds the settings to force random or direct

tests and it also designates if the agent is active or not during compilation time.

The environment is configured by the block Env Configuration, this block holds the objects

for the configurations of each agents and the number of each master and slave agents. The number

of agents is used to configure the agent manager.

The configuration of the environment and of the agents is first declared in the Test class. This

way, the testbench can be configured in a single file, which increases simplicity in its usage.

The communication between the agents and the agent manager is done using TLM-2.0 sockets.

The agent manager receives information from the master agents by a target socket and sends

information to the slave agents using an initiator socket. These sockets were grouped in two

different classes to ease their utilization: socket_slave_container and socket_master_container,

respectively.

50 The Verification Environment

As it was mentioned previously, the agents are divided in two categories: master agents and

slave agents. Master agents are characterized by having at least one component that sends informa-

tion about the DUT’s state to the agent manager, this kind of component is denominated of master

component. On the other hand, slave agents are agents whose components are affected by the

information sent to the agent manager, these components are denominated of slave components.

The figure 4.14 represents the components of a slave agent.

Scoreboard

Monitor #1

(Slave)

Monitor #2

(Slave)

sequence

Sequencer

 Driver

(Slave)Interface Agent

Con guration

 Agent

(Slave)

Broadcaster

Figure 4.3: A top level view of a slave agent

The agent’s socket is connected to a block named broadcaster. The purpose of the broadcaster

is to take messages from the agent manager and send them to monitors and drivers, so they can be

aware of the agent’s state.

A normal socket only allows for a maximum of one connected object at the same time, so it

is unfit to send information to multiple objects at the same time. However, analysis ports are fit

for this behavior: each time an export connects to an analysis port, the analysis ports adds it to an

internal list. When a message is sent through the analysis port, the port cycles through the list and

relays the message to each connected export. [3, p. 16]

So the broadcaster was created in order to convert a socket connection into an analysis port,

allowing to send messages from the agent manager to multiple components.

Unlike a slave agent, the structure of the master agent is more simple. In this agent, there is

not a broadcaster block. It is mostly due to the fact that the socket connection of the master agent

connects to only one component that is aware of the change of states that happens in the DUT,

usually the master monitor. This master monitor is the component that feeds information about

the DUT’s configuration to the agent manager, it is usually a monitor that watches the serial line

for the most important communication.

4.1 Testbench Overview 51

The figure 4.13 represents the structure of a master agent.

Scoreboard

Monitor #1

(Master)

Monitor #2

(Normal)

sequence

Sequencer

 Driver

(Normal)Interface

Agent

Configuration

 Agent

(Master)

Figure 4.4: A top level view of a master agent

The sockets present in both agents, master and slave, are denominated of passthrough sockets.

They represent sockets that relay information to other socket, they are usefull in a way that help to

isolate sub-components within the components while keeping the connections intact.

This testbench provides a basic architecture that can be easily extended and modified to a

DUT’s needs. Each of the mentioned blocks are represented by SystemVerilog classes that allow

for this kind of modification. A top level view of the testbench with the classes’ names can be seen

on figure 4.5.

Top

DUT

generic_

agent_master

In
te
rf
a
c
e

generic_environment

generic_test

generic_

agent_slave

generic_

agent_slave

generic_

env_config

generic_

agent_config

generic_

agent_config

generic_

agent_config

generic_

agent_manager

Figure 4.5: A top level view of the verification environment with class names

The current section served to present an overview of the functionality of the testbench: what

is supposed to do, how classes are organized in the environment and how they communicate with

52 The Verification Environment

each other.

Starting from the next section, it will be given a deeper explanation of the components of the

testbench and how to use them:

• The section 4.1.1 will summarize every component in the testbench, their parent classes and

their path within the folder hierarchy.

• The section 4.1.2 will present an overview of the file organization of the testbench.

• The explanation of each component will start in the section 4.2. These sections will describe

the structure of each block as it is structured in the source code.

• The section 4.13 will define a workflow list that should provide a reference point to adapt

this testbench to other devices.

By the end of section 4, a basic understanding about the verification environment should al-

ready be given and an example of its application will be demonstrated in chapters 5 and 6.

4.1.1 Class table

The table 4.1 represents a list of all the classes created for the testbench.

Block type Block class Parent class File Chapter
Configuration generic_agent_config uvm_object config/generic_agent_config.sv 4.2.1
Configuration generic_env_config uvm_object config/generic_env_config.sv 4.2.2
Test generic_test uvm_test test/generic_test.sv 4.3
Environment generic_environment uvm_environment env/generic_environment.sv 4.4
Agent Manager generic_agent_manager uvm_component general_class/generic_agent_manager.sv 4.5
Info Block generic_info_block uvm_object general_class/generic_info_block.tex 4.6
Socket container socket_master_container uvm_component general_class/sockets.sv 4.7
Socket container socket_slave_container uvm_component general_class/sockets.sv 4.7
Agent generic_agent_master uvm_agent env/generic_agent_master.sv 4.8.1
Agent generic_agent_slave uvm_agent env/generic_agent_slave.sv 4.8.2
Broadcaster broadcaster uvm_component general_class/broadcaster.sv 4.9
Monitor generic_monitor_master uvm_monitor monitors/generic_monitor_master.sv 4.10.1
Monitor generic_monitor_slave uvm_monitor monitors/generic_monitor_slave.sv 4.10.2
Driver generic_driver_slave uvm_driver drivers/generic_driver_slave.sv 4.11

Table 4.1: Elements of the class generic_agent_config

The code of the classes is partitioned with comments to make clear at the first sight how each

class is composed. This composition will be explained the the format of tables in the following

sections.

4.1 Testbench Overview 53

The class tree of the verification environment is represented on figure 4.6.

uvm_void

uvm_object

uvm_report_objectuvm_transaction

uvm_sequence_item

uvm_sequence

uvm_phase uvm_con guration

uvm_component

uvm_sequencer

uvm_driver

uvm_monitor

uvm_agent

uvm_scoreboard

uvm_env

uvm_test

generic_agent_con ggeneric_env_con g

generic_test

generic_env

generic_agent_manager

generic_info_block

socket_slave_container socket_master_container

generic_agent_master

generic_agent_slave

broadcaster

generic_monitor_master

generic_monitor_slave

Figure 4.6: Class tree of the created testbench

54 The Verification Environment

4.1.2 File system

The organization of the verification environment on the file system is shown on the file tree below.

generic_tb/

agents/

generic_agent_master.sv

generic_agent_slave.sv

config/

generic_agent_config.sv

generic_env_config.sv

drivers/

generic_driver_slave.sv

dut/

envs/

generic_env.sv

general_class/

broadcaster.sv

generic_agent_manager.sv

socket.sv

interfaces/

monitors/

generic_monitor_master.sv

generic_monitor_slave.sv

pkg/

generic_pkg.sv

scoreboards/

generic_scoreboard.sv

sequences/

tests/

Makefile.vcs

top_module.sv

All the source files from the DUT must be placed in the generic_tb/dut/ directory and all the

virtual interfaces must go into the generic_tb/interfaces/ directory.

The new components added to the testbench must be place into their own directory (agents

in the generic_tb/agents/ , monitors in the generic_tb/monitors/ and so on) and all the new files

must be added to the generic_tb/pkg/generic_pkg.sv. This file contains a list of all the files from

the testbench to be included during the compilation.

The file generic_tb/top_module.sv is the file that connects the DUT and the testbench and the

execution of the testbench is done using the provided Makefile.

4.2 Configuration Blocks 55

4.2 Configuration Blocks

There are two main base configuration blocks:

• The agent configuration block: generic_agent_config

• The env configuration block: generic_env_config

They are highlighted in figure 4.7.

Top

DUT

generic_

agent_master

In
te
rf
a
c
e

generic_environment

generic_test

generic_

agent_slave

generic_

agent_slave

generic_

env_config

generic_

agent_config

generic_

agent_config

generic_

agent_config

generic_

agent_manager

Figure 4.7: Configuration blocks of the verification environment

Both of these blocks are extended from the default class uvm_object and they are required in

order to configure the environment and the agents within the environment. They can be found in

the directory src/config/.

These blocks are created in the test class and then, they are saved in the UVM configuration

database (uvm_config_db) to be loaded later by each object.

4.2.1 Agent configuration block

The class generic_agent_config holds the necessary configuration of each agent in order to to test

the DUT. This configuration includes three main aspects: variables that specify the state of the

agent, the virtual interface for the comunication with the device and any variables needed to force

a direct test.

These configurations affect mostly the monitors, the drivers and the sequencers. The monitors

and the drivers will get the virtual interface through this block and the sequencers will get infor-

mation about the test (like the randomness, number of transactions to be generated and variables

override).

56 The Verification Environment

The class constructor and the necessary UVM macros are also present in this class.

This configuration is unique to every agent of the testbench, so for each different agent instan-

tiated within the environment, a new object of this class must be created. After the configuration

is defined in the test class, it is saved in uvm_config_db and then loaded inside each agent. More

information can be consulted in the chapters 4.3 and 4.8.

A sum up of this class can be seen in the table 4.2.

generic_agent_config
Field Description

bit agent_active
Default variables int random

int num_trans
Virtual interfaces Interfaces for the communication with the DUT
Variables for direct testing Any variables needed to force direct tests
Constructor Typical class constructor
UVM Macros Typical UVM macros

Table 4.2: Elements of the class generic_agent_config

The ’Default Variables’ are variables already available that specify the behavior of the corre-

sponding agent. A brief description of each will follow:

• bit agent_active - This variable tells to the environment to build all the components inside

of the agent and it connects the agent to the agent_manager. If the variable is in disable

state, the agent won’t be connected to the agent_manager and the components inside of this

agent will be ignored and they won’t be created. Possible states:

– 1’b0 - Agent disabled

– 1’b1 - Agent enabled

• int random - This variable states wether the agent will do a random test or not, and if it

will do one, it can also state the randomness of the test. The variable is not a bit type

but an integer type. Unlike the variable agent_active, this one doesn’t force anything in

the testbench, it is up to the verification engineer to use this variable as he sees fit, it is

more a guideline than anything else. Ideally, the value ’0’ means no randomness and then

variables for direct testing must be set but the values bigger than ’0’ would specify the type

of randomness. An example will follow:

– 0 - No randomness. Aditional variables specific to the DUT must be set as well as

num_trans

– 1 - Some randomness. The sequencer will generate a number of transactions defined

by num_trans and limited with a set of constraints

– 1 - More randomness. The sequencer will generate a number os transactions defined

by num_trans but they won’t be limited by constraints

4.2 Configuration Blocks 57

– 2 - Total randomness. The sequencer will generate a random number of transactions

(it won’t be affected by num_trans) and they won’t be limited by constraints

• int num_trans - This variable defines the number of transactions to be generated in the

sequencers of the agents. For more information, check the description of the ’random’

variable above.

The ’Virtual interfaces’ is a field reserved for all the interfaces that are used by the agent. They

are defined in the classes derived from ’generic_agent_config’.

The ’Variables for direct testing’ field is reserved for cases when it is necessary to force a

certain test to the DUT. For example, if we are testing an I2C interface, a random test would

randomize the slave addresses that are sent through the communication bus but this gives the

option to force the address to a specific value.

Both ’Virtual interfaces’ and ’Variables for direct testing’ fields aren’t implemented by default,

they must be filled out in the derived classes from ’generic_agent_config’. Although the variable

from the field ’Default Variables’ are initialized, they must be defined in the derived class too.

4.2.2 Env configuration block

The class generic_env_config contains information about the number of master and slaves agents

present in the testbench, this information is used by the agent_manager to create all the necessary

sockets. The class also contains the objects for the configuration of each agent.

The structure of the block can be consulted in the table 4.3.

generic_env_config
Field Description

Variables n_agents_master
n_agents_slave

Agent configurations Objects for the configuration of each agent
Constructor Typical class constructor
UVM Macros Typical UVM macros

Table 4.3: Elements of the class generic_env_config

The Variables field only contain two variables: n_agents_master, the number of master agents,

and n_agents_slave, the number of slave agents. These variables should indicate the number of

agents present in the code, not the number of enabled agents that will be defined in the test class.

Both these two variables must be defined in the derived classes.

The Agent configurations field contains the objects for the configuration block of each agent,

these objects are put in the env configuration so that they can be loaded into each agent during the

build phase of the generic_agent. This field must be filled out in the derived class.

58 The Verification Environment

4.3 The Test Block

The test block is derived from the class uvm_test and this is where the whole test should be con-

figured. It is highlighted in figure 4.8.

Top

DUT

generic_

agent_master

In
te
rf
a
c
e

generic_environment

generic_test

generic_

agent_slave

generic_

agent_slave

generic_

env_config

generic_

agent_config

generic_

agent_config

generic_

agent_config

generic_

agent_manager

Figure 4.8: Test block of the verification environment

The environment and the configuration blocks for the agent and for the environment are defined

in this class, including the type of test itself (if it is random or not, how many transactions will the

sequencers generate and what variables will be forced for direct testing). The virtual interfaces for

the agents are retrived from the configuration database and submitted to the agent configuration

blocks (objects derived from the class generic_agent_config).

Along with the source code of the environment, and in the examples below, it is provided a

class named generic_test but it is just a base example of a typical test class, it isn’t necessary for

new tests to be derived from this class.

A typical test class is represented in the table 4.4.

generic_test
Field Description

Environment and configuration blocks Instantiation of the environment and of the configu-
ration blocks

Constructor Typical class constructor
Build Phase Creation of the instantiated blocks and configuration

of the test
UVM Macros Typical UVM macros

Table 4.4: Elements of the class generic_test

4.4 The Env Block 59

The field "Environment and configuration blocks" instantiates the necessary configuration

blocks for the environment and for each agent. If there are 3 agents in the testbench, 3 agent

configuration objects will be created.

The field "Build Phase" is where the whole test is configured by setting up the variables de-

fined in each configuration. This phase also retrieves the virtual interface from the configuration

database and saves it into each agent configuration. Each agent configuration is saved in the env

configuration block. The file generic_tb/tests/generic_test.sv provides some examples for a typical

test block.

4.4 The Env Block

The class generic_envinroment is responsible for configuring the agents of the testbench as well

the agent manager. Figure 4.9 represents the environment class.

Top

DUT

generic_

agent_master

In
te
rf
a
c
e

generic_environment

generic_test

generic_

agent_slave

generic_

agent_slave

generic_

env_config

generic_

agent_config

generic_

agent_config

generic_

agent_config

generic_

agent_manager

Figure 4.9: Env block of the verification environment

The class retrives the env configuration block from the database and it checks in every agent

configuration block, whether the respective agent is enabled or not. If the agent is enabled, then

it is created and its configuration is submitted to the configuration database, (uvm_config_db), so

that it can be used by each agent in order to configure the monitors, the drivers and sequencers.

The env block creates the agent manager and sets up the socket connections from this block to

each agent. It also provides a number of dummy socket connections equal to the number of slave

agents.

These dummy sockets replace the connection of each disabled agent to the agent manager.

They are needed because the agent manager uses the variable n_agents_slave available in the env

60 The Verification Environment

config block, and it won’t take into account the number of agents disabled manually in the test

class.

The testbench assumes that the agents in the code are always be enabled but, at the same time,

it provides the ability to override the creation of an agent without removing it from the code, in

case of the agent having missing features or unexpected bugs. If the agent is manually disabled

from the testbench, the agent manager’s socket will attempt to connect to the socket nevertheless

but UVM socket initiators require to be connect to one terminator, otherwise the testbench will not

execute. So these dummy sockets were arranged for these special cases.

The basic idea is to configure the environment and all the agents in the test class and save the

agent configurations in the environment block. The environment will load those configurations and

it will build the agents accordingly.

The structure of the generic_env_class is represented on table 4.5

generic_env
Field Description

Env config Configuration block for the env (class derived from
generic_env_config)

Agents of the testbench and agent manager Instatiation of all the agents and of the agent man-
ager

Dummy sockets Dummy sockets to replace missing socket connec-
tions

Constructor Typical class constructor
Build Phase Retrieval of the env configuration and creation of the

agents and of the agent manager
Connect Phase Connection of the agents to the agent manager
UVM Macros Typical UVM macros

Table 4.5: Elements of the class generic_env

The Env config field is destined to the instatiation of the object that holds the env configuration,

which is an object derived from the class generic_env_config. This configuration is then retrieved

from the configuration database during the build phase.

The Agents of the testbench and agent manager field is reserved to the instantiation of all the

agents available in the testbench, as well the agent manager.

The Dummy Sockets are the sockets used to replace the connection of missing agents to the

agent manager as described in the previous text.

The Build Phase retrieves the configuration of the environment and it creates all the agents

and the agent manager instantiated in the Agents of the testbench and agent manager field. In

this phase, it is recommended to check if the agent is available or not by checking the variable

generic_agent_config.agent_active before building the object.

In the Connect Phase, the connections between the agents and the agent manager are made.

Like in the Build Phase, it is recomended to check if the agent is active before establishing the

4.5 The Agent Manager 61

connection. If the agent is disable, the connection should be made to a dummy socket instead.

Further examples are demonstrated in the comments of the file generic_tb/envs/generic_env.sv.

4.5 The Agent Manager

The agent manager block is derived from the class uvm_component. It is not derived from the

other most known classes like uvm_sequencer, uvm_monitor or uvm_driver because it is neither

a sequencer, a monitor or a driver. It is not derived from uvm_object either because this class

doesn’t support some of the necessary features like phases and TLM ports and sockets. So it

is derived from uvm_component, which is the root class for all other UVM components, which

means support for phases and TLM, and inherits the features from uvm_object.

The class is represented in figure 4.10.

Top

DUT

generic_

agent_master

In
te
rf
a
c
e

generic_environment

generic_test

generic_

agent_slave

generic_

agent_slave

generic_

env_config

generic_

agent_config

generic_

agent_config

generic_

agent_config

generic_

agent_manager

Figure 4.10: Agent manager block of the verification environment

62 The Verification Environment

This class receives an object from a master agent, processes it in a state machine and controls

the other slave agents with this information. The generic_agent_manager can be consulted on the

table 4.6.

generic_agent_manager
Field Description

Sockets Instantiation of the array of sockets to be connected
to the agents of the environment

Variables Variables that specify the number of master and
slave agents used to create the number of sockets
necessary for all the agents

Constructor Typical class constructor
Build Phase Creation of the sockets necessary for the testbench
Run Phase Execution of the state machine
UVM Macros Typical UVM macros

Table 4.6: Elements of the class generic_agent_manager

The Sockets field declares two kind of sockets. A slave socket and a master socket. The

slave sockets receive information from the master agents and the master sockets send informa-

tion to the slave agents. These sockets are objects from the classes socket_slave_container and

socket_master_container respectively. They will be mentioned in section 4.7.

The Variables field declares two variables: n_agents_master and n_agents_slave. The values

of these two variables are specified by the class generic_env and they indicate the number of

master agents and slave agents in the testbench. They are used to automatically create the number

of sockets for all the agents during the build phase. In this field should also be declared the object

that is going to be used by the state machine of this agent manager in order to control the slave

agents.

In the build phase, it is used the variables n_agents_slave and n_agents_master, which are

defined by the generic_env class, to create all the sockets. So if there are 3 slave agents in the

testbench, it will be created 3 master sockets to send them the information about their state.

In the run phase, it is executed the state machine of the agent manager. It is represented by a

function state_machine() which should be overridden in the derived classes from generic_agent_ma-

nager.

The derived classes from this one should add the object that contains information necessary to

the state machine in order to control the agents and the state machine itself.

An example of the class from the current section can be found in the comments of the file

generic_tb/general_class/generic_agent_manager.sv.

4.6 Generic Info Block

The class generic_info_block is derived from uvm_object and it represents the parent class of

the object that is going to be sent to the agent manager in order to control the slave agents. The

4.7 Socket containers 63

classes derived from generic_info_block should contain information about the changes to the DUT,

usually, the registers that are going to be modified.

The structure of the block if very simple, it can be consulted in the table 4.7.

generic_info_block
Field Description

Variables Variables that model the changes made to the DUT
Constructor Typical class constructor
UVM Macros Typical UVM macros

Table 4.7: Elements of the class generic_info_block

An example of variables to be filled in the "Variables" field are the register variable and the

data to be written into that register. The state machine of the agent manager could be programmed

to react to this information in a way that disables and enables the necessary agents for the test.

4.7 Socket containers

The socket containers are two classes that have initiator sockets (denominated here as socket mas-

ters) and target socket (denominated here as socket slaves), these classes are socket_master _con-

tainer and socket_slave_container respectively.

Just like the component generic_agent_manager (chapter 4.5), these classes are derived from

uvm_component.

By having these sockets in classes, it becomes easier to implement them in a new component,

this way it is enough to call the class socket container and the socket is ready to be used.

The figure 4.11 represents the socket containers on the agent manager.

generic_

agent_manager

socket_

master_container

socket_

slave_container

Figure 4.11: Sockets from the agent manager

Firstly, it will follow an explanation about the socket container that is used to receive messages

from the master agent, and then it will be explained the socket container used to send messages to

the slave agents.

64 The Verification Environment

The class socket_slave_container is represented in the table 4.8;

socket_slave_container
Field Description

Target socket Instantiation of the target socket that passes around
an object derived from generic_info_block

Variables Instatiation of some of the objects needed for the
socket

Constructor Typical class constructor
Task b_transport() Implementation of the task to be executed when the

socket is used
UVM Macros Typical UVM macros

Table 4.8: Elements of the class socket_slave_container

The socket_slave_container is responsible for getting messages from the master agents as it

implements a target socket. It contains a variable named notification that changes its value from

1’b0 to 1’b1 every time the function b_transport() is summoned by a initiator socket. The socket

receives a class named generic_info and the function b_transport() copies it to a local object. To

access to the information from this object, the component that creates this container, must cast the

object generic_info to the desired variable type.

An example will follow in the code 4.1.

1 c l a s s i 2 c _ a g e n t _ m a n a g e r ex tends g e n e r i c _ a g e n t _ m a n a g e r ;
2 s o c k e t _ s l a v e _ c o n t a i n e r s o c k e t _ s l a v e ;
3 g e n e r i c _ i n f o i 2 c _ i n f o ;
4
5 / / Code f o r t h e c o n s t r u c t o r and o t h e r f u n c t i o n s
6
7 v i r t u a l ta sk r u n _ p h a s e (uvm_phase phase) ;
8 @(s o c k e t _ s l a v e . n o t i f i c a t i o n) ;
9 $ c a s t (i 2 c _ i n f o , s o c k e t _ s l a v e . g e n e r i c _ i n f o) ;

10
11 / / Code f o r i 2 c _ i n f o usage goes h e r e
12 endtask : r u n _ p h a s e
13 e n d c l a s s : i 2 c _ a g e n t _ m a n a g e r

Code 4.1: Code for the usage of socket slave container

This keeps this container generic enough for any testbench.

The run phase waits for a notification of the container to trigger, meaning that there is data

available to be read, then the task casts the variable generic_info to the variable i2c_info in order

to access the fields of the original information.

The Target socket field instantiates the target socket. This socket passes around an object

derived from generic_info_block, so in order to use these containers, we have to derive a class

from that class.

4.7 Socket containers 65

The Variables field contains the instantiation of the object to be received through the socket,

a delay object that is necessary for the socket as well and a variable notification. This variable

is defaulted to 1’b0 when the class is created and every time the b_transport() task is used, it

is changed to 1’b1. This serves to inform the other classes when information is available to be

treated.

The b_transport() field represents the typical task used by socket targets.

On the other hand, the class socket_master_container implements the initiator socket. This

class is simpler than the class socket_slave_container. While the former one implements the

b_transport() task and the notification variable, the socket_master_container, besides of creating

the initiator socket, only creates an wrapper around the execution of the b_transport() task to not

have the need to pass the object uvm_tlm_time.

Just like socket_slave_master, it is necessary to cast the object we want to send into an object

of the class generic_info. The table 4.9 represents the mentioned class.

socket_slave_container
Field Description

Initiator socket Instantiation of the initiator socket that passes
around an object dervied from generic_info_block

Variables Instatiation of the object from uvm_tlm_time that is
necessary for the execution of b_transport() task

Constructor Typical class constructor
Wrapper for b_transport() Wrapper to take away the need of passing an object

from uvm_tlm_time
UVM Macros Typical UVM macros

Table 4.9: Elements of the class socket_slave_container

An example for this class usage will follow in code 4.2.

1 c l a s s i 2 c _ a g e n t _ m a n a g e r ex tends g e n e r i c _ a g e n t _ m a n a g e r ;
2 s o c k e t _ m a s t e r _ c o n t a i n e r s o c k e t _ m a s t e r ;
3 g e n e r i c _ i n f o i 2 c _ i n f o ;
4
5 v i r t u a l ta sk r u n _ p h a s e (uvm_phase phase) ;
6 $ c a s t (g e n e r i c _ i n f o , i 2 c _ i n f o) ;
7 s o c k e t _ m a s t e r . t r a n s p o r t (g e n e r i c _ i n f o) ;
8 endtask : r u n _ p h a s e
9 e n d c l a s s : i 2 c _ a g e n t _ m a n a g e r

Code 4.2: Code for the usage of socket master container

The file generic_tb/general_class/sockets.sv contains the code used to create the socket con-

tainers and some examples as well.

66 The Verification Environment

4.8 Agents

The classes that represent the agents are highlighted in the figure 4.12.

Top

DUT

generic_

agent_master

In
te
rf
a
c
e

generic_environment

generic_test

generic_

agent_slave

generic_

agent_slave

generic_

env_config

generic_

agent_config

generic_

agent_config

generic_

agent_config

generic_

agent_manager

Figure 4.12: Agents of the verification environment

There are two types of agents: master agents and slave agents. The concept of master and slave

refers to the relationship of the components with the agent manager. If a component is classified

as master, it means that it will send information to the agent manager, on the other hand if a

component is classified as slave, it means that it will receive information from the agent manager.

The master agents are represented by the class generic_agent_master and are responsible for

sending information about the DUT’s state to the agent manager. The slave agents, represented

by the class generic_agent_slave, are agents controlled by the agent manager on basis with the

information provided by the master agents.

The sockets available in the agents, both master and slave, aren’t from the classes socket_*_con-

tainers, they are passthrough sockets, meaning that they just relay the messages to another socket.

4.8 Agents 67

4.8.1 Master Agent

A typical composition of a master agent is represented in figure 4.13.

Scoreboard

Monitor #1

(Master)

Monitor #2

(Normal)

sequence

Sequencer

 Driver

(Normal)Interface

Agent

Configuration

 Agent

(Master)

Figure 4.13: A typical constitution of a master agent

The master agent is characterized by having at least one component that sends information to

the agent manager through the passthrough socket, usually that component is a master monitor.

Master monitors will be seen in detail in the section 4.10.1.

The table 4.10 represents the class generic_agent_master.

generic_agent_master
Field Description

Socket initiator passthrough Instantiates a socket passthrough to connect a socket
initiator to the socket target of the agent manager

Instantiation of the agent’s components Instatiation of the configuration, sequencers, drivers,
etc.

Constructor Typical class constructor
Build Phase Creation of the objects of the agent’s components
Connect Phase Connection of the sockets and load the virtual inter-

faces
Run Phase Execution of the sequence on the sequencer
UVM Macros Typical UVM macros

Table 4.10: Elements of the class generic_agent_master

The Socket initiator passthrough field instantiates the socket passthrough to be used by the

agent’s components.

The Instatiation of the agent’s components field instantiates all the necessary agents compo-

nents (like agent configuration, sequences and sequencers, drivers, monitors and scoreboards).

The Build Phase creates the mentioned components and loads the agent’s configuration.

68 The Verification Environment

The Connect Phase connects the socket initiator to the socket passthrough, loads the test con-

figuration into the agent, connects the driver to the sequencer, connects the monitors to the scor-

board and loads the interfaces into the monitor and into the drivers.

The Run Phase raises the testbench objection and loads a sequence into the sequencer.

4.8.2 Slave Agent

The slave agent is represented by the class generic_agent_slave and is very similar to the master

agent except in two aspects:

• Instead of master components that send information to the agent manager, it features slave

components that receive information from the agent manager

• It features an extra block: the broadcaster

The figure 4.14 represents the composition of the slave agent class.

Scoreboard

Monitor #1

(Slave)

Monitor #2

(Slave)

sequence

Sequencer

 Driver

(Slave)Interface Agent

Con guration

 Agent

(Slave)

Broadcaster

Figure 4.14: A typical constitution of a slave agent

The broadcaster is a block that converts a socket communication into an analysis port, allowing

to send the same message to multiple components at the same time. A deeper explanation of the

broadcaster can be consulted later in the chapter 4.9.

The components connected to the broadcaster are usually components that are constantly using

computing resources which, in the most cases, are the monitors and the drivers. The scoreboards

and the sequencers also consume computing resources but they usually depend on the monitors

and on the driver to work, so if these are on hold, the scoreboard and the sequencer should be on

hold as well.

4.9 Broadcaster 69

The class is represented on table 4.11.

generic_agent_slave
Field Description

Socket target passthrough Instantiates a socket passthrough to connect the
agent master to the broadcaster

Instantiation of the agent’s components Instatiation of the configuration, sequencers, drivers,
etc and of the broadcaster.

Constructor Typical class constructor
Build Phase Creation of the objects of the agent’s components
Connect Phase Connection of the sockets and load the virtual inter-

faces
UVM Macros Typical UVM macros

Table 4.11: Elements of the class generic_agent_slave

The Socket initiator passthrough field instantiates the socket passthrough to be used by the

brodcaster.

The Instatiation of the agent’s components field instantiates all the necessary agents compo-

nents (like agent configuration, sequences and sequencers, drivers, monitors and scoreboards). It

also instantiates the broadcaster.

The Build Phase creates the mentioned components and loads the agent’s configuration.

The Connect Phase connects the agent manager to the broadcaster, connects the slave compo-

nents (like drivers and monitors) to the broadcaster was well, loads the test configuration into the

agent, connects the driver to the sequencer, connects the monitors to the scorboard and loads the

interfaces into the monitor and into the drivers.

More information can be consulted in the files generic_tb/agents/generic_agent_master.sv and

generic_tb/agents/generic_agent_slave.sv.

4.9 Broadcaster

The broadcaster is a block that converts socket connections into analysis ports. The block will

connect to the passthrough socket of the slave agent and it will relay all the messages of the socket

to the slave components connected to the analysis port. It is a one-way communication from the

socket to the analysis port, which means that the slave components can’t send messages back to

the agent manager. The broadcaster is derived from the class uvm_component in order to be able

to use sockets and ports.

70 The Verification Environment

The broadcaster block is represented on figure 4.15.

Scoreboard

Monitor #1

(Slave)

Monitor #2

(Slave)

sequence

Sequencer

 Driver

(Slave)Interface Agent

Con guration

 Agent

(Slave)

Broadcaster

Figure 4.15: The broadcaster block

The composition of the class broadcaster is represented on table 4.12.

broadcaster
Field Description

Ports and sockets Instantiates an analysis port and a slave socket
Variables Instatiation of the object from generic_info_block to

be transported through the socket to the analysis port
Constructor Typical class constructor
Build Phase Creation of the object from generic_info_block
Run Phase Starting of an infinite loop on the task

get_socket_slave()
Task get_socket_slave() Task to get messages from the socket and to send

them to the analysis port
UVM Macros Typical UVM macros

Table 4.12: Elements of the class broadcaster

The "Ports and socket" field instantiates the socket to communicate with the agent manager

and an analysis port to connect to all the slave components of the agent.

The "Variables" field instantiates the object from generic_info_block that is collected from the

agent manager and sent to the slave components. This block must not be replaced with a derived

class or similar. Each component that receives the object generic_info_block must cast it to the

derived class chosen by the engineer. And the similar happenswith the agent manager, it must cast

the derived class to the object generic_info_block before sending it through the socket.

The "Build Phase" creates the object instantiated in "Variables".

The "Run Phase" starts an infinite look on the task that gets messages from the agent message

and relays them to the analysis port.

4.10 Monitors 71

The task get_socket_slave() listens to the socket’s notification variable and waits for it to be-

come active, then it retrives the message from the socket and sends it to the analysis port by calling

the task write() of each connected port.

The broadcaster is one of the few classes that can be used as it is provided by the testbench,

there isn’t the necessity of created a child class derived from this one in order to complement it

with the rest of the testbench.

The code for this class is located in the file generic_tb/general_class/broadcaster.sv.

4.10 Monitors

In this verification environment, there are 3 different types of monitors:

• Master monitors: components derived from the class generic_monitor_master

• Slave monitors: components derived from the class generic_monitor_slave

• Normal monitors: components derived from the default class uvm_monitor

The master monitors are components that listen to the most essential lines of the DUT and

gather information about their change of state. They are usually monitors that are responsible for

changing and testing the DUT’s configuration.

The slave monitors are components that are controlled by the state machine from the agent

manager. These monitors receive information blocks derived from generic_info_block and they

react to that information. As an example, they could stop collecting transactions from the data

lines, in case of the functionality, that they are observing, gets disabled by the DUT.

The normal monitors are components isolated from the agent manager, they have no relation-

ship with it.

There might be cases in which deriving classes from generic_monitor_master or generic_moni-

tor_slave might not make sense. For example, when designing a testbench in which the monitor

that collects transactions from the serial bus, that same monitor could be used for both master and

slave agents. In this case, it would mean replicating the code through two different classes that

derived from generic_monitor_master and generic_monitor_slave.

So, it is not mandatory to have classes derived from these two generic monitors as long they

implement the same features.

72 The Verification Environment

4.10.1 Master Monitors

The master monitor is represented in figure 4.16.

Scoreboard

Monitor #1

(Master)

Monitor #2

(Normal)

sequence

Sequencer

 Driver

(Normal)Interface

Agent

Configuration

 Agent

(Master)

Figure 4.16: The master monitor block

This class does not have the analysis port implemented, it is needed to do it in the derived

classes. The composition of the class generic_monitor_master is represented on table 4.13.

Table 4.13: Elements of the class broadcaster

generic_monitor_master
Field Description
Socket Instantiates master socket
Analysis Port The analysis port for the communication with the

scoreboard is necessary to be instantiated in the de-
rived classes

Virtual Interfaces For the communication with the DUT
Variables The object to be sent to the agent manager goes here,

as well the variables needed for the monitor
Constructor Typical class constructor
Run Phase The tasks that collect transactions from the commu-

nication between the DUT and the driver go here
Task send_to_socket() Task to send messages to the agent manager
UVM Macros Typical UVM macros

The Socket field instantiates a master socket container to be used in the task send_to_socket().

The Analysis Port field is reserved for the instantiation of the analysis port necessary to send

data to the scoreboard. The analysis port must be created in the derived classes.

The Variables field is reserved for monitor variables and the instantiation of the object to be

sent to the agent manager.

The Run Phase represents the main task of the monitor.

4.10 Monitors 73

The task send_to_socket() is the task responsible to submit an object derived from generic_info_block

to the agent manager. Before executing this task, the object derived from generic_info_block must

be casted into its parent class. Example: $cast(generic_info_block, derived_info_block)

4.10.2 Slave Monitors

A slave monitor is represented in figure 4.17.

Scoreboard

Monitor #1

(Slave)

Monitor #2

(Slave)

sequence

Sequencer

 Driver

(Slave)Interface Agent

Con guration

 Agent

(Slave)

Broadcaster

Figure 4.17: The slave slave block

This class does not have the analysis port implemented, it is needed to do it in the derived

classes. The composition of the class generic_monitor_slave is represented on table 4.14.

Table 4.14: Elements of the class broadcaster

generic_monitor_slave
Field Description
Analysis export and TLM FIFO Instantiates an analysis export and a FIFO
Analysis Port The analysis port for the communication with the

scoreboard is necessary to be instantiated in the de-
rived classes

Virtual Interfaces For the communication with the DUT
Variables The object to be received from the agent manager

goes here, as well the variables needed for the mon-
itor

Constructor Typical class constructor
Connect Phase Connects the analysis export to the FIFO
Run Phase The tasks that collect transactions from the commu-

nication between the DUT and the driver go here
Task send_to_socket() Task to send messages to the agent manager
UVM Macros Typical UVM macros

74 The Verification Environment

The Analysis export and TLM FIFO instantiates an analysis export, which connects to the

analysis port of to the broadcaster, and a FIFO. The FIFO is connected during the Connect Phase

to the analysis export and it stores all the items received from data received from the broadcaster.

The Analysis Port field is reserved for the instantiation of the analysis port necessary to send

data to the scoreboard. The analysis port must be created in the derived classes.

The Variables field is reserved for monitor variables and the instantiation of the object to be

sent to the agent manager.

The Connect Phase connects the FIFO to the analysis export.

The Run Phase represents the main task of the monitor.

The task get_fifo() is the task responsible for getting objects of the class generic_info_block

from the broadcaster. The information contained on these objects are used to control the operation

of the monitor. After the execution of this task, the object of generic_info_block must be casted

to an object derived from the class generic_info_block. Example: $cast(derived_info_block,

generic_info_block))

4.10.3 Normal Monitors

In this verification environment, the normal monitors are classified as simple monitors derived

from the class uvm_monitor that do not have any special feature like embedded sockets or ports.

4.11 Drivers

In a similiar way to the monitors, drivers are divided in two categories:

• Slave drivers: components derived from the class generic_driver_slave

• Normal drivers: components derived from the class uvm_monitor

The structure and the functionality of the class generic_driver_slave is very similar to the

structure of the class generic_monitor_slave, so the description of section 4.10 is suitable for the

class of the current section.

4.12 Scoreboard, Sequencers, sequences and transactions 75

4.12 Scoreboard, Sequencers, sequences and transactions

In an UVM testbench there are three important classes that help to model the communication

with the DUT. These are the sequencer (usually derived from uvm_sequencer), the sequence (usu-

ally derived from uvm_sequence) and the transaction (usually derived from uvm_sequence_item).

These three classes are addressed in better detail in appendix A.5.

The scoreboard is a component derived from uvm_scoreboard that compares the result of the

DUT with the result of the model of the testbench. This component is address in appendix A.9.

Due to their close proximity with the specification of the DUT, these classes are recommended

to be designed from the scratch because they contain little information that could be used for this

generic verification environment. So they aren’t mentioned in the current chapter but they will be

mentioned in chapters 5 and 6.

4.13 Work flow

This section will enumerate the steps necessary to build this testbench:

1. Create the virtual interface

The interface is essential for the communication between the DUT and the testbench, more

information about it can be consulted in appendix A.4.

2. Create the top module for the testbench

The top module will connect the testbench with the DUT and it will save the virtual interface

into to the uvm_config_db

3. Create the configuration blocks

The env configuration block and the agent configuration block must be created so that they

can be instantiated in the test class

4. Create the test block

The test class will instantiate the configuration blocks from step 3, it will get the virtual

interface created in step 1 from uvm_config_db and save it in the agent configuration block.

The test class will also configure any needed directed tests and it will save the agent config-

uration blocks into the env configuration block

5. Create the env block

The configuration block of the env is passed to the env through the test class. The env class

will pass the agent configuration blocks to each created agent within this class

6. Create the transactions, the sequences and the sequencers

The transactions and the sequences will represent a model of the communication with the

DUT and the sequencer will provide transactions to the driver.

76 The Verification Environment

7. Create the drivers

The drivers are components that interact with the DUT by sending it transactions taken from

the sequencers.

8. Create monitors and scoreboard

The monitors and the scoreboard will provide a mean for testing the DUT.

9. Build an agent using the components created in the previous steps

The agent should establish the connection between the connections between the monitor and

the scoreboards, and between the driver and the sequencer. The agent should also connect

the monitors and the driver to the virtual interface. This interface should be present on the

agent configuration block. The broadcaster should be created in case of a slave agent.

10. Create the agent manager

11. In the env block, establish the connect between the agents and the agent manager

These 11 steps provide a reference point for building a verification environment based on the

generic blocks of the current chapter.

4.14 Conclusion

This chapter presented a deep analysis of the developed verification environment. The environ-

ment features some of the details mentioned about in sections 3.2 and 3.6 and it should be ready

to be applied to real situations.

The chapters 5 and 6 will demonstrate situations in which this testbench can be used. Thes

chapters will give continuity to the verification plan of the SOC approached in section 3.6 and it

will approach a new device: a model of the audio codec AC97.

Chapter 5

Application of the Environment to the
SOC

In chapter 3.4, a group of components were designed to verify I2C interfaces individually. In

chapter 3.6 those components were used to design a possible verification environment to accomo-

date the necessary features of the SOC. In chapter 4 all the components and design decisions of

the verification environment were documentated.

This chapter and the chapter 6 will the usage of the environment in two situations: the SOC

from chapter 3.5 and a model of an AC97 audio codec, that will be presented later in this thesis.

5.1 Verification of the SOC

The chapter 3.5 presented a device that represented a typical high-speed communciation protocol

used by Synopsys. Later in chapter 3.6, it was identified some features and characteristics neces-

sary in order to verify the created device and then, a possible testbench was conceived using the

verification components created for I2C interfaces in chapter 3.4.

By applying those components to the verification environment of the chapter 4, an appropriated

testbench can be designed to accomodate the functionality of the SOC.

Those components will form three different agents, each agent will connect to each I2C in-

terface. There will be one master agent, i2c_agent_serialmaster, along with two slave agents,

i2c_agent_serialslave_1 and i2c_agent_serialslave_2, and they will be connected by an agent

manager, i2c_agent_manager.

77

78 Application of the Environment to the SOC

5.1.1 I2C Master Agent

The figure 5.1 represents an agent capable of emulating an I2C-Master device. It will be classified

as a master agent and, as result, it will be derived from generic_agent_master, which will be

inheriting the passthrough socket for the communication the the agent manager.

i2c_scoreboard

i2c_monitor_master

_serialslave

i2c_monitor_normal

_registers

i2c_sequence

i2c_driver_normal

_serialmasterInterface

i2c_agent_config

I2C-Master Agent (Master)

i2c_agent_master_serialmaster

i2c_sequencer

Figure 5.1: Agent for testing an I2C slave interface

The driver and the monitor that will be listening to the parallel port, will not have any relation-

ship with the agent manager, so they are classified as normal components. They will be represented

by the classes i2c_driver_normal_serialmaster and i2c_monitor_normal_registers, respectively.

The monitor that will be tapping into the serial line for the communication between the

driver and the DUT, will collect transactions about the DUT’s change of state, so it will clas-

sified as a master monitor. As a master monitor, it inherits the socket necessary to send in-

formation about the DUT to the agent manager. This monitor will be represented by the class

i2c_monitor_master_serialslave.

This agent will be used to stimulate the I2C-Slave interface of the SOC, meaning that it will

control the functionality of the device. So, the sequencer will generate random transactions that

contain: a random slave address, a random read/write bit and a random 8-bit value to be sent to the

bus in case of the write operation. As it was mentioned in chapter 3.6, the real address of the slave

will be retrieved from the configuration database by the driver and it will be configured through

the parallel port of the device.

The slave address, that is sent through an I2C frame, will be randomized by the sequencer.

However, there are 127 possible outcomes from this randomization but only one of them will be a

match for the slave driver, so there is a probability of 1/127 in which the sequencer will provide a

correct address. This means that most of the tests done will be with an incorrect address.

To avoid this, it is possible to make use of weight distributions in constraints, which is a feature

from SystemVerilog [13, p. 145], in order to change the probabilities of the randomized values.

5.1 Verification of the SOC 79

By adding the constraint from code 5.1 to the the transaction, the correct address will have a 50%

chance of being generated and an incorrect address will have the remaining 50% chance.

1 c o n s t r a i n t c o r r e c t _ a d d r _ c o n s {
2 s l a v e _ a d d r e s s d i s t { r e a l _ s l a v e _ a d d r e s s : = 5 0 ,
3 ! (r e a l _ s l a v e _ a d d r e s s) : = 5 0 } ;
4 }

Code 5.1: Constraint for balancing the probabilities of generating the real slave address

The variable real_slave_address must be added to the transaction and it is value will be de-

fined by the i2c_sequencer and by the i2c_sequence.

A similar case happens with the data that will be written to the SOC. The SOC only reacts to

two possible values: 0x01 (change to low-speed lane) and 0x02 (change to high-spped lane). But

the data value has 8 bits and as a result, the probability of these two values being the result of a

complete randomization is very tiny. So a similar constraint should be created in order to increase

the odds for both desired values. This constraint is represented on code 5.2.

1 c o n s t r a i n t d a t a _ c o n s {
2 d a t a d i s t {0 x01 : = 3 5 , 0x02 : = 3 5 , ! (0 x01 | | 0x02) : = 3 0 } ;
3 }

Code 5.2: Constraint for balacing the probabilities of generating useful data values

The transaction also implements a compare_trans(i2c_trans trans) function. This function ac-

cepts another transaction of the same class, it compares the values of each variable and it produces

an uvm_error in case of mismatched values. This function was created to simplify the functionality

of the scoreboard.

The newly created transaction for the master agent is represented on table 5.1. In order to reuse

the already exisiting code from the transaction, this transaction was extended from i2c_trans_master.

So only the variables after the row New variables were added.

The sequence is responsible for attributing values to a transaction. The sequence and the se-

quencer share a relationship in which the sequence can access the variables of the sequencer. The

variables of the sequencer can be written by the higher class, which is the agent. This means that

the agent can use the information retrieved from the block i2c_agent_config to influence how the

transactions are generated.

The class i2c_agent_config will be derived from generic_agent_config, so it will inherit its

variables, and it will added the structure mentioned in chapter 3.6. The test class will create an

object of i2c_agent_config and it also define the variable values of the object. The agent will then

load this object and it will copy the values of the variables to the sequencer. The sequence can

then access to the values from the sequencer and shape the generated transactions.

After the configuration of a configuration object i2c_agent_config, the sequence can use the in-

formation of this object to enable and disable constraints. In this situation, the class i2c_sequence

was programmed to take the following options depending on the value of the variable random:

80 Application of the Environment to the SOC

Table 5.1: I2C-Master transaction

Transaction: i2c_trans_master (Extends from i2c_trans)
Name Description Variable

Slave address The address to be sent in the I2C frame logic [6:0] slave_address
Read/write bit The bit that defines the type of operation logic rw
Data The 8 bit message sent through the bus logic [7:0] data

Number of retries
The number of times that the master tries to communication in
case the lack of ACK

int n_retries

New elements

Actual slave address
The actual address of the slave being tested. This address is
sent to the port addr of the parallel interface

logic [6:0] real_address

correct_addr_cons
Constraint for balancing the probabilities of generating the real
slave address

N/A

data_cons
Constraint for balacing the probabilities of generating useful
data values

N/A

compare_trans(i2c_trans_master)
Function to compare the transaction with another transaction
of the same class

N/A

• If random is equal to 0, the sequence will not randomize the transaction and it will use the

values defined in i2c_agent_config

• If random is equal to 1, the sequence will randomize the transaction but the constraints will

be respected

• If random is equal to 2, the sequence will do a total randomization of the transaction and it

will not take into account the defined constraints

As a result, the values inside a transaction are always dependent of the configuration object

even though the object is first created in the test class.

The scoreboard is represented by the i2c_scoreboard class and it is only responsible for ex-

ecuting the function compare_trans() of one of transactions collected by the monitor, by passing

the other transaction as an argument. The scoreboard structure is very similar to the one described

in appendix A.9.

5.1 Verification of the SOC 81

5.1.2 I2C Slave Agent

The figure 5.2 represents the agent that emulates the functionality of an I2C-Slave device.

Interface

Broadcaster

i2c_sequence

i2c_driver_slave

_serialslave i2c_agent_con g

i2c_sequenceri2c_monitor_slave

_registers

i2c_monitor_slave

_serialslave

i2c_scoreboard

I2C-Slave Agent (Slave)

i2c_agent_slave_serialslave

Figure 5.2: Agent for testing an I2C master interface

The structure of this agent and its operation will be very similar to the i2c_agent_slave_serial-

master. The driver (i2c_driver_slave_serialslave) will maintain activity on the bus, while the mon-

itors (i2c_monitor_slave_serialslave and i2c_monitor_slave_registers) will be collecting transac-

tions from the serial line and from the parallel interface, so that they can be evaluated by the

scoreboard i2c_scoreboard. The scoreboard, in its turn, will use the compare_trans() available in

the transaction to evaluate the test that will be made to the DUT.

But this agent will be distinguished from the master agent due to the broadcaster and the

components that will connect to this new block. The driver and to both monitors will be connected

to the broascaster to receive information about the DUT’s state from the agent manager. These

components will cease operation if they receive information that their interface is disabled and

they will resume execution if they receive information that their connected interface is enabled.

The state machine is based on the the behavior described in section 3.6.3.

82 Application of the Environment to the SOC

5.1.3 Grouping the agents

The complete verification environment is represented in figure 5.3.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

i2c_env

i2c_test

Interface 1

Interface 0

i2c_agent_

master

i2c_agent_

manager

i2c_agent_

slave_1

Interface 2

i2c_agent_

slave_2

i2c_agent_

config_master

i2c_agent_

config_slave_1

i2c_agent_

config_slave_2

i2c_env_

config

Figure 5.3: Overview of the complete verification environment for the SOC

In order to demonstrate the reconfigurability of the environment, it is considered another revi-

sion of the SOC that only features the I2C slave interface because both I2C master interfaces are

disabled. To test this new revision, the testbench needs to disable all the slave agents. In order

to accomplish this, it is only required to set the variable agent_active to 1’b0 in the respective

configuration blocks. This example is represented in figure 5.4.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

i2c_env

i2c_test

Interface 0

i2c_agent_

master

i2c_agent_

manager

i2c_agent_

slave_1

i2c_agent_

slave_2

i2c_agent_

config_master

i2c_agent_

config_slave_1

i2c_agent_

config_slave_2

i2c_env_

config

Figure 5.4: Verification environment reconfigured for a revision of the SOC that features only one
I2C-Slave

The testbench will proceed then to disconnect both agents from the DUT and from the agent

manager as well. The agents will not build the components inside them.

5.1 Verification of the SOC 83

Another example is shown on figure 5.5. The new example describes a revision of the DUT

in which is enabled one I2C slave and one I2C master. To build a testbench for this case, it

is only required to set the agent_active variable of the ac97_agent_config_master and of the

ac97_agent_config_slave_2 to 1’b1.

SOC

clk

I2C

(S)

I2C

(M)

I2C

(M)

i2c_env

i2c_test

Interface 0

i2c_agent_

master

i2c_agent_

manager

i2c_agent_

slave_1

Interface 2

i2c_agent_

slave_2

i2c_agent_

config_master

i2c_agent_

config_slave_1

i2c_agent_

config_slave_2

i2c_env_

config

Figure 5.5: Verification environment reconfigured for a revision of the SOC that features one
I2C-Slave and one I2C-Master

The presence of the agent manager also allows for the behavior described in 3.6.3. The test-

bench will be able to enable and disable slave agents dinamically, depending on the sequences

generate by the agent master.

84 Application of the Environment to the SOC

5.2 Conclusion

The verification environment developed on chapter 4 eased the construction of a testbench for the

SOC since it established a solid framework in order to build the necessary components on top of

it.

Without this framework, the agent manager and the broadcaster would have to be created

in order to pass messages along the different agents. The TLM communication available in the

generic monitors, drivers and agents would have to be created as well, not to mention the agent

manager and the configuration blocks

By having this infrastructure ready to work, the verification engineer can focus its attention to

the tasks and functions unique to the device under test.

The table represents the verification components created for the verification environment of

the SOC.

Table 5.2: Verification components for the testbench of the SOC

Block type Block class Parent class

Monitor I2C-Slave Serial (Master) i2c_monitor_master_serialslave generic_monitor_master
Monitor Registers (Normal) i2c_monitor_normal_registers uvm_monitor
Monitor I2C-Slave Serial (Slave) i2c_monitor_slave_serialslave generic_monitor_slave
Monitor Registers (Slave) i2c_monitor_slave_registers generic_monitor_slave

Scoreboard i2c_scoreboard uvm_scoreboard

Driver I2C Serial Master i2c_driver_serialmaster uvm_driver
Driver I2C Serial Slave i2c_driver_serialslave generic_driver_slave

Transaction i2c_trans uvm_sequence_item
Transaction i2c_trans_master i2c_trans
Sequence i2c_sequence uvm_sequence
Sequencer i2c_sequencer uvm_sequencer

Scoreboard i2c_scoreboard uvm_scoreboard

Agent config i2c_agent_config generic_agent_config
Environment config i2c_env_config generic_env_config
I2C Info Block i2c_info_block generic_info_block

Broadcaster broadcaster uvm_component

Agent Manager i2c_agent_manager generic_agent_manager
Agent i2c_agent_master_serialmaster generic_agent_master
Agent i2c_agent_slave_serialslave generic_agent_slave

Env i2c_environment generic_environment

Test i2c_test uvm_test

Chapter 6

Application of the Environment to the
AC97

6.1 Overview of the AC97

After a brief demonstration of the verification environment in section 5.1, a new device will be

verified using a testbench derived from the same verification environment. This section will anal-

yse a different type of device to see how the testbench could be implemented in devices that differ

from the one created.

The new device under test is an implementation of an AC97 codec, the LM4550 from Texas

Instruments. The DUT represents only a partial implementation of this codec and it was developed

by the professor José Carlos Alves for one of the courses in Digital System Design, at FEUP.

The model features 2 stereo outputs, 2 stereo inputs, a stereo DAC, a stereo ADC, analog

mixers and a serial interface. The model is represented in the figure 6.1.

Figure 6.1: A simple model of LM4550 [11, p. 2]

85

86 Application of the Environment to the AC97

This codec provides a stereo data acquisition system through a dual 18-bit ADC and a stereo

analog output from an on-chip stereo DAC. Each output can be muted or attenuated and each mixer

has separate gain, attenuation and mute control. It is also possible to feed sound samples through

the serial interface and mix them with the input analog signals. These samples are converted with

the built-in DAC and the result from the mix can be also be obtain through the serial interface

because due to the ADC. [11]

6.1.1 AC-Link Interface

The AC-Link is a synchronous serial link, similar to the SPI interface, that is used to control

the codec. It is constituted by five wires: the clock, the sync signal, the reset and two data

wires, sdata_out and sdata_in. The wire sdata_in represents the output of the codec and the

wire sdata_out represents the input of the codec.

This interface is able to configure the registers responsible for the codec functions (like the

multiplexer, the mixer and the gain/mute control) and it is able to transport sound samples to the

DAC.

The input and output frames of an AC-Link interface have different structures. The input frame

is represented in figure 6.2. [11, p. 18]

Slot

Data

Sync

Tag
 Reg

Addr

PCM

LEFT

 PCM

RIGHT

1 2 3 4 5 6 7 8 9 11 120

Sync

BIT_CLK

 Valid

Frame
Slot 1

 Addr

Slot 2

 Data
Slot 3

 Left

 DAC

Slot 4

Right

 DAC

(...)
Slot 12 ID1 ID0

 Reg

Data

Data

Figure 6.2: Codec Input frame of an AC-Link interface

The input frame is constituted by a Tag phase, 16 bits, and 12 data slots, 20 bits each. In total,

each frame consists of 256 bits but in the used model, the last slot is always discarded, so it is only

to be considered a frame of 236 bits.

The Tag phase contains information about the validity of the frame and what slots have avail-

able data. The data that travels whithin the device is transported in the slots and each slot represents

a specific set of data used by the codec.

As it is possible to see in figure 6.2, the first bit of the Tag phase indicates whether the current

frame is valid or not, while the next sucession of 12 bits represent each slot and indicate if there is

data available in the respective slot. The last two bits, ID0 and ID1, represent the codec address.

6.1 Overview of the AC97 87

The next slots contain the information to be used by the codec. The slot 1 contains the address

of the register to be accessed and the slot 2 contains the data that will be written in the address

defined by slot 1. The slots 3 and 4 contain the sound samples to be streamed to the codec’s DAC,

they represent the left and right channels respectively.

Due to the reduced simplicity of the model, only the slots from 0 to 4 are used. Although the

data for the other slots is collected by the device, that data is not used.

The available registers are:

• 02h: Master • 18h: DAC
• 04h: HP_OUT • 1Ah: Record select mux
• 0Eh: MIC1 • 1Ch: ADC
• 10h: LINE_IN

These registers control the elements of the model represented in figure 6.1 and the values of

each of them are defined in the official datasheet. [11, p. 23]

On the other hand, the frame produced by the codec is represented in figure 6.3. [11, p. 20]

Slot

Data

Sync

Tag
 Reg

Addr

PCM

LEFT

 PCM

RIGHT

1 2 3 4 5 6 7 8 9 11 120

Sync

BIT_CLK

Codec

Ready
Slot 1

 Addr

Slot 2

 Data
Slot 3

 Left

 ADC

Slot 4

Right

 ADC

(...)
Slot 12 "0" "0"

 Reg

Data

Data

Figure 6.3: Codec Output frame of an AC-Link interface

The output frame is very similar to the input frame, differing in some aspects. The slot 1

represents the 7-bit address sent to the codec through the input frame and the slot 2 represents the

data available on that address. Both these slots only are filled with data in case of a read request

sent through the input frame. For the example being demonstrated in this chapter, these two slots

will not be used in the testbench.

The most important slots are the slots 3 and 4, they represent the output of the codec’s ADC.

The data present in these two slots will be collected by monitors in the testbench to make an

evaluation of the test to be done. The input interface will be accessed by one of the drivers of the

testbench in order to configure the device.

The next section (6.2) will describe a verification plan for this device using the developed

verification environment.

88 Application of the Environment to the AC97

6.2 Verification components

The DUT is a model of an audio codec, which features audio mixing as main feature. So it is

desirable to test 4 main functionalities:

1. First test: AC-Link interface and DUT’s registers, section 6.3.1

The codec is controlled by the AC-Link interface and the registers control the whole device

2. Digital to analog test, section 6.3.2

The codec is capable of converting digital waveforms into analog waveforms

3. Analog to analog test, section 6.3.3

The codec is able to mix its analog inputs and send the result to the analog output

4. Analog to digital test, section 6.3.4

There is the possibility of convert the analog inputs into digital data

The current section will examine the DUT and it will identify which verification components

are necessary in order to verify it. After the components for the testbench are defined, the sec-

tion 6.3 will present the verification plan of the mentioned four possible situations using those

components.

6.2.1 Driving the inputs of the AC97 audio codec

By analyzing the figure 6.1 it is possible to identify some important inputs and outputs. There are

3 main inputs:

• One digital input, the sdata_out

• Two analog inputs, the MIC1 and the LINE_IN.

In order to generate activity on the DUT, it will be created two types of drivers that will con-

nect to these inputs. One of the drivers will generate a digital frame and it will connect to the

signal sdata_out, and the other driver will generate an analog waveform and it will connect to the

analog inputs.

The sdata_out input accepts a frame from the format of the figure 6.2, so the digital driver will

take a random transaction of the sequencer and it will generate a similar frame. This driver will be

represented by a class denominated of ac97_driver_normal_aclink_input and the run phase of the

class will consist on a infinite loop, during the simulation, that cycles through the following steps:

1. Request a transaction from the sequencer

2. Generate and sample a waveform to be included in the slots 3 and 4

3. Compose and send an AC-Link input frame

6.2 Verification components 89

4. Inform the sequencer that the current operation with the transaction is finished and return to

step 1

The waveform generator from the step 2 will generate a sawtooth wave with fixed parameters:

a sawtooth wave with a frequency of 1 KHz will be generated for the left channel and another

sawtooth wave will be generated with a frequency of 2 KHz for the right channel.

On the other hand, the register address and the respective data will be obtained by a random

transaction from the sequencer. So, these two variables can be added to a transaction named

ac97_trans_base.

This transaction will represent the communication from the testbench to the DUT, so it will

contain the variables for the register’s address and the data to be written on the DUT. It will

also contain a constraint to limit the values to the registers available in the codec. A function to

compare the transaction with another one of the same class was also created under the name of

compare_regs(ac97_trans_base trans).

The table 6.1 represents the transaction ac97_trans_base.

Table 6.1: Transaction for generating values for the sine generator - ac97_trans_base

Transaction: ac97_trans_base
Name Description Variable

Register’s address Address of the register that it is intended to write logic [6:0] regaddr
Data Data to be written at the register’s address logic [15:0] data
Registers bank Copy of the bank of registers of the DUT logic [15:0] regs []
DAC Left Data for the left channel of the DAC logic [17:0] dac_left
DAC Right Data for the right channel of the DAC logic [17:0] dac_right
constraint regaddr_cons Constraint to limit the addresses generated in this transaction N/A

compare_regs()
Function to compare the transaction with another transactions
of the same class

N/A

The code for the constraint can be seen in code 6.1.

1 c o n s t r a i n t r e g a d d r _ c o n s {
2 r e g a d d r i n s i d e {7 ’h1A , 7 ’ h18 , 7 ’h1C , 7 ’ h0E ,
3 7 ’ h10 , 7 ’ h04 , 7 ’ h02 } ;
4 }

Code 6.1: Constraint for limiting the addresses randomized in ac97_trans_base

Besides of a transaction, a sequencer and a sequence generator will also be necessary, so the

classes ac97_sequencer_regs and ac97_sequence_regs will be created as well.

The second driver will only be active when the analog inputs are in use by the DUT, so it will be

derived from generic_driver_slave and it will be represented by a class named ac97_driver_slave_-

sine. This driver will generate a sine waveform with a frequency and attenuation randomized by

the transaction ac97_trans_sine and it will cycle through these steps:

1. Create a parallel process that generates a sinewave for LINE_IN (left and right channels)

and MIC1

90 Application of the Environment to the AC97

2. Request a transaction from the sequencer and update the frequency values of the sinewave

generators

3. Inform the sequencer that the operation of the transaction is done and return to step 2

The transaction ac97_trans_sine is represented on table 6.2.

Table 6.2: Transaction for generating values for the sine generator - ac97_trans_sine

Transaction: ac97_trans_sine
Name Description Variable

Frequency Left Frequency of the left channel logic [15:0] freq_left
Frequency Right Frequency of the right channel logic [15:0] freq_right
Attenuation Left Attenuation of the left channel logic [15:0] attenuation_left
Attenuation Right Attenuation of the right channel logic [15:0] attenuation_right

The transaction is obtained through ac97_sequencer_sine and generated with ac97_sequence_-

sine, which can force values to the transaction or generate random values.

6.2.2 Collecting data items from the AC97’s inputs and outputs

While the drivers pulls transactions from the sequencer to maintain activity on the digital and

analog inputs, the testbench will need components that listen to the same activity. When it comes

to the digital interface, two monitors will be created:

• A monitor that listens to the parallel interface of the DUT to check the result of the driver’s

influence: ac97_monitor_normal_parallel_regs

• A monitor that listens to the activity on the bus and that emulates the DUT’s functionality:

ac97_monitor_master_aclink_input

The first monitor checks the parallel interface to access directly to the DUT’s registers bank

and observess how the DUT reacts to the transactions from the driver ac97_driver_normal_aclink_in-

put. It is classified as a normal monitor because it does not have any influence in the agent manager

nor it is controlled by it. The monitor will send the accessed address and the respective data to a

scoreboard to be evaluated by the testbench.

The second monitor will listen to the AC-Link interface and it will emulate the DUT with

the information that is sent through the sdata_out wire, and it will collect transactions for the

scoreboard about the accessed registers. This monitor will be considered a master monitor, as

it will hold important information about the DUT’s state, and it will belong to a class named

ac97_monitor_master_aclink_input. The agent manager will receive the emulated registers bank

every time a new transaction is collected from this monitor.

6.2 Verification components 91

Along with register’s data, it is also sent through the wire sdata_out, digital waveforms to be

processed by the DAC. In order to create a different test for this functionality, it will be created an-

other monitor that collects information about the those waveforms through the serial interface. The

monitor will only be active if there is a change in the DUT’s registers that enables both the DAC

and the analog outputs, so it will be classified as a slave monitor. It will be represented by the class

ac97_monitor_slave_aclink_dac which will be derived from ac97_monitor_slave_aclink_base.

The class ac97_monitor_slave_aclink_base contains the core functionality of the AC-Link

interface and the necessary structure to be controlled by the agent manager. This class will be

derived to another monitor too, the ac97_monitor_slave_aclink_adc, which will be used to get

results from the ADC through the wire sdata_in. This monitor will store the collected values to

the variables dac_left and dac_right of the class ac97_trans_base.

To recap, until now, four different monitor were created to collect the necessary data from the

digital IOs. In order to collect transactions from the analog IOs, two another monitors will be

created:

1. A monitor from the class ac97_monitor_slave_parallel_analog_input

2. A monitor from the class ac97_monitor_slave_parallel_analog_output

Both of these monitors are derived from ac97_monitor_slave_parallel_analog_base, which

contains some common functions that they share, like the function for creating the transaction and

sending the transaction to the scoreboard, and also the analysis port. They are classified as slave

monitors because they will only be active when the codec enables the ports they are using.

The monitor ac97_monitor_slave_parallel_analog_input connects to the inputs MIC1 and

LINE_IN and emulates the core functionality of the codec, which means that this monitor has

a reference model of the codec, a golden model. This golden model will emulate the functionality

of the codec and it will send the result to a scoreboard.

Meanwhile, the monitor ac97_monitor_slave_parallel_analog_output will observe the analog

outputs, LINE_OUT and HP_OUT, collect their values into transactions and send the result to the

same scoreboard as ac97_monitor_slave_parallel_analog_input.

The transaction that will be collected by both these monitors will be a transaction of the class

ac97_trans_ana. It will not be used to generate data items for drivers components, it will only be

used for collecting samples of the codec’s outputs.

92 Application of the Environment to the AC97

The transaction ac97_trans_ana is represented on table 6.3.

Table 6.3: Transaction for collecting transactions from the codec’s outputs - ac97_trans_ana

Transaction: ac97_trans_ana
Name Description Variable

LINE_OUT Left channel Output of the Master left channel logic [63:0] line_out_li
LINE_OUT Right channel Output of the Master right channel logic [63:0] line_out_ri
HP_OUT Left channel Output of the Headphone left channel logic [63:0] hp_out_li
HP_OUT Right channel Output of the Headphone right channel logic [63:0] hp_out_ri

compare_ana()
Function to compare the transaction with another transaction
of the same class

N/A

6.2.3 Evaluating the results of the test

The scoreboard is a very simple component. The evaluation functions are already implemented in

the transactions themselves, so the main task of the scoreboard is limited to receiving the transac-

tions from the monitors and executing the compare_*() functions. Each test will be represented

by an agent and each agent will have its own scoreboard.

6.2.4 Agent manager

The agent manager will be represented by the class ac97_agent_manager. This class will control

the four tests described in the beginning of section 6.2 and each of these tests will be represented

by an agent. The section 6.3 will build these agents, and in section 6.3.5 it will be explained how

the state machine available in the agent manager will behave.

6.2 Verification components 93

6.2.5 Summary of the verification components

The table 6.4 presents a list of all the base classes created for this testbench.

Table 6.4: Elements of the AC97 testbench

Block type Block class Parent class

Transaction Registers ac97_trans_base uvm_sequence_item
Sequence Registers ac97_sequence_regs uvm_sequence
Sequencer Registers ac97_sequencer_regs uvm_sequencer
Transaction Sine ac97_trans_sine uvm_sequence_item
Sequence Sine ac97_sequence_sine uvm_sequence_item
Sequencer Sine ac97_sequencer_sine uvm_sequencer
Transaction Analog Output ac97_trans_ana ac97_trans_base

Driver AC-Link Input (Normal) ac97_driver_normal_aclink_input uvm_driver
Driver Sine (Slave) ac97_driver_slave_sine generic_driver_slave

Monitor AC-Link Input (Master) ac97_monitor_master_aclink_input generic_master_monitor
Monitor Parallel Regs (Normal) ac97_monitor_normal_parallel_regs uvm_monitor
Monitor AC-Link Base (Slave) ac97_monitor_slave_aclink_base generic_slave_monitor
Monitor AC-Link Input DAC (Slave) ac97_monitor_slave_aclink_dac ac97_monitor_slave_aclink_base
Monitor AC-Link Output ADC (Slave) ac97_monitor_slave_aclink_adc ac97_monitor_slave_aclink_base
Monitor Analog Base (Slave) ac97_monitor_slave_parallel_analog_base generic_slave_monitor
Monitor Analog Input (Slave) ac97_monitor_slave_parallel_analog_input ac97_monitor_slave_parallel_analog_base
Monitor Analog Output (Slave) ac97_monitor_slave_parallel_analog_output ac97_monitor_slave_parallel_analog_base

Scoreboard ac97_scoreboard uvm_scoreboard

Agent Manager ac97_agent_manager generic_agent_manager

94 Application of the Environment to the AC97

6.3 Test cases

The last section provided an overview of the verification components created on top of the devel-

oped verification environment. The next chapters will apply these components to a full featured

testbench in order to cover the four test cases enumerated in chapter 6.2.

6.3.1 First test: Testing the DUT’s registers

The first test case that it is desirable verify is the registers bank of the codec together with the

AC-Link input interface, since these two elements will be controlling the whole functionality of

the device. The figure 6.4 represents the functionality of the DUT that will be tested.

Figure 6.4: LM4550 registers highlighted

Ideally, the testbench would send a random register through the AC-Link interface and it would

check the impact on the registers of the codec. At the same time, the testbench would listen to the

same interface and emulate the expected behavior. Finally, it would compare that same behavior

with the modifications made to the registers and it would look for any mismatches between the

DUT’s behavior and the the emulated behavior. If they match, the test would pass, otherwise, it

would be that something wrong.

A question may arise from the previous paragraph: what if the problem it is in the testbench

instead of the DUT? That could happen as well but what is expected for from a verification pro-

cess is an agreement between the DUT and the testbench. This is one of the reasons that design

and verification is done by different teams, the design team developes the device itself while the

verification team develops a model of the same functionality of the DUT, a golden model. This

process reduces redudancy in the interpretation of the specification.

6.3 Test cases 95

Using the verification components from section 6.2, a testbench can be built for this test case

(figure 6.5).

ac97_scoreboard

REGS

ac97_agent_regs

ac97_monitor_master_

aclink_input

ac97_monitor_normal_

parallel_regs

ac97_sequencer_regs

ac97_driver_normal_

aclink_input

Figure 6.5: LM4550 Testbench for the registers

The components presented here work as described in section 6.2. They all form a single

component, the ac97_agent_regs. This agent is responsible for testing the interface AC-Link

along with the DUT’s registers and it will be classified as an agent master, as it will inform the

agent manager about the state of the DUT.

6.3.2 Second test: Testing the Digital to Analog functionality

After building a test case for testing the registers, the audio mixing functionality of the codec can

start to be tested. The first analog test to be realized will be the conversion digital to analog, which

is highlighted in figure 6.6.

REGS

Figure 6.6: LM4550 digital to analog functionality highlighted

96 Application of the Environment to the AC97

The digital waveform that is sent through the AC-Link interface is generated by the ac97_driver-

_normal_aclink_input of the agent ac97_agents_regs, so it will not be needed a driver for this test.

The test will consist on two monitors, one of them (ac97_monitor_slave_aclink_dac) will tap into

the AC-Link input interface to collect the values to be inputed in the DAC, and the other one

(ac97_monitor_slave_parallel_analog_output) will tap into the analog outputs.

The monitor ac97_monitor_slave_aclink_dac has included a golden model of the DUT in

order to successfully emulate the functionality of the DAC.

The new agent is represented in figure 6.7.

REGS

ac97_scoreboard

ac97_agent_regs

ac97_monitor_master_

aclink_input

ac97_monitor_normal_

parallel_regs

ac97_sequencer_regs

ac97_driver_normal_

aclink_input

ac97_scoreboard

ac97_monitor_slave_

aclink_dac

ac97_monitor_slave_

parallel_analog_output

golden

model

ac97_agent_dig2ana

Figure 6.7: LM4550 Testbench for the digital to analog functionality

The agent is represented by the class ac97_agent_dig2ana and it is classified as a slave agent.

This test will be controlled by ac97_agent_regs and it will only be operational when both DAC

and the analog outputs are enabled by the ac97_agent_regs. The association between the agents

ac97_agent_regs and ac97_agent_dig2ana is established by the class ac97_agent_manager.

6.3 Test cases 97

The relationship between agents it is represented in figure 6.8.

REGS

ac97_scoreboard

ac97_agent_regs

ac97_monitor_master_

aclink_input

ac97_monitor_normal_

parallel_regs

ac97_sequencer_regs

ac97_driver_normal_

aclink_input

ac97_scoreboard

ac97_monitor_slave_

aclink_dac

ac97_monitor_slave_

parallel_analog_output

golden

model

ac97_agent_dig2ana

ac97_agent_

manager

- DAC: On
- HP/Line Out: On

On

Figure 6.8: LM4550 Testbench for the digital to analog functionality with the agent manager

The agent manager will be connected to both slave monitors of the second agent, these mon-

itors will only be active when, both, DAC and analog ouputs are enabled. When disabled, the

monitors will not produce any test.

6.3.3 Third test: Testing the Analog to Analog functionality

Another test that needs to be made is the analog to analog mixing. The functionality is represented

in figure 6.9.

REGS

Figure 6.9: LM4550 analog to analog functionality highlighted

98 Application of the Environment to the AC97

This agent belongs to the class ac97_agent_ana2ana, which features a broadcaster to relay

messages from the agent manager to the components responsible to execute the test. The driver and

the monitor receive these messages and if they contain information that the outputs are unmuted,

they components start executing the test.

The agent is represented in figure 6.10.

REGS

ac97_agent_

manager

ac97_agent_ana2ana

ac97_sequencer_sine

ac97_agent_regs

ac97_agent_dig2ana

ac97_monitor_slave_

parallel_analog_input

ac97_monitor_slave_

parallel_analog_output

golden

model

ac97_scoreboard

ac97_driver_slave_

analog_input

Broadcaster

Figure 6.10: LM4550 Testbench for the analog to analog functionality

The driver (ac97_driver_slave_analog_input) generates sine waves depending on the fre-

quency and attenuation values of the transactions generated by the sequencer. The monitor ac97_-

monitor_slave_parallel_analog_input will then collect the waveforms generated by the driver and

emulate the functionality of the codec. Meanwhile the monitor ac97_monitor_slave_parallel_ana-

log_output will check the output of the DUT and send the results to the scoreboard.

It is worth noticing that for this test, the agent ac97_agent_dig2ana is not enabled. This is

the result of the DAC being disabled, rendering the agent unusable. The state machine of the

ac97_agent_manager is described in section 6.2.

As it is possible to see, the agent manager is able to dinamically add and remove lanes and

agents.

6.3 Test cases 99

6.3.4 Fourth test: Testing the Analog to Digital functionality

The last test case is responsible for testing the analog to digital functionality. This functionality is

represented on figure 6.11.

REGS

Figure 6.11: LM4550 analog to digital functionality highlighted

The agent that represents this test belongs to the class ac97_agent_ana2dig. It is a slave agent,

so it features a broadcaster as well. But, just like the agent ac97_agent_dig2ana, it does not have

a driver included, it will listen instead to the output of the driver of ac97_agent_ana2ana.

The agent is represented on figure 6.12.

REGS

ac97_agent_ana2ana

ac97_agent_regs

ac97_agent_dig2ana

ac97_agent_ana2dig

ac97_monitor_slave_

parallel_analog_input
ac97_monitor_slave_

aclink_output
golden

model

ac97_scoreboard

Broadcaster

ac97_agent_

manager

Figure 6.12: LM4550 Testbench for the analog to digital functionality

This agent is dependable of the ac97_agent_ana2ana to operate, this is due to the lack of the

driver. With just a few lines of code, the analog driver and the respective sequencer could be easily

100 Application of the Environment to the AC97

added to the current agent, but this situation was chosen in order to demonstrate an example in

which agents may depend from resources of other agents.

The situation is dealt normally by the agent manager, as long as its state machine is pro-

grammed with this aspect in mind. Whenever the test analog to digital needs to be made, the agent

manager can send a message to the ac97_agent_ana2ana to execute the necessary resource, in

this case, the driver. The other monitors of the same agent can remain disabled while the driver

operates. Although, both monitors and the driver receive the same kind of message, they can be

programmed to interpret it differently.

6.3.5 Automatization of the environment

The agent manager has the purpose of automate the testbench. This means that, instead of dis-

abling and enabling agents manually every time a different test has to be made, the agent can take

charge of this operation.

This functionality is based on a state machine which follows the following rules:

• If the input mixers are mutted, and the DAC and the analog output HP_OUT, or LINE_OUT,

are unmuted, the agent ac97_agent_dig2ana will be enabled. Otherwise it woill be disabled.

• If, at least, one of the input mixers, MIC1 or LINE_IN is unmuted, as well with at least one

of the analog outputs, the agent ac97_agent_ana2ana will be enabled. Otherwise it will be

disabled.

• If the DAC is muted, the ADC unmuted, the Record Select Mux set to one of the four avail-

able paths and, at least, one of the input mixers are unmuted, the agent ac97_agent_ana2dig

will be enabled. Otherwise it will be disabled.

It is worth noting that this verification plan is not intended to be a complete and thorough plan,

it is only intended to demonstrate the variety of situations that could be used by the developed

verification environment

6.4 Conclusion

This chapter analyzed a DUT that differed from the category of communication protocols men-

tioned in chapter 3. This was done with the intention of showing how the developed testbench

would behave in a device that diverged from the SOC developed in section 3.5.

Once again, the testbench proved to be convenient by offering the basic infrastructure and

guidelines in order to verify a variety of situations. Just like the SOC, the main features of the

audio codec were divided in different tests and different agents were created to execute each one of

those tests. The agent manager was responsible to manage all the tests, on base of the information

provided by the master agent of this DUT.

However, for this device, the agent manager revealed to be more useful than the testbench

with the SOC. In the fourth test case, the agent manager allowed to enable and disable individual

6.4 Conclusion 101

resources of a different agent without activating an undesirable test. This situation shows the

flexibility of the verification environment created for this dissertation.

102 Application of the Environment to the AC97

Chapter 7

Conclusion

This chapter presents an overview of all the work accomplished during this dissertation, along

with an analysis of the objectives that were initially assigned to the project.

7.1 Summary of the developed work

The main objective of this project was the development of a generic verification environment in

SystemVerilog by following the UVM methodology. The verification environment had to take into

consideration the attributes of high-speed communication protocols developed by Synopsys, such

as the possibility of multiple configurations, the presence of multiple lanes and the behavior that

their share between them.

In order to accomplish this project, multiple phases were planned:

• The first phase consisted in the acquisition of concepts of SystemVerilog, of functional

verification and of UVM. Afterwards, the work was proceeded to the analysis of one of

the existing verification environments used by Synopsys in order to identify the desirable

features for a generic testbench

• The second phase consisted in designing a device that would accomodate some of the fea-

tures studied earlier and the respective testbench

• The third phase was destined to separating the elements of the testbench that could be reused

to other devices and develop a new verification environment

• The final phase proposed an implementation of the developed environment to, not only, the

device designed specially for this dissertation (the SOC) but also to a model of an audio

codec AC97. The application of the environment to the audio codec was intended to show

the versatility of the developed environment.

This document demonstrated the adaptability and the usefulness of verification methodologies.

A well designed, and documented, verification environment can be reused and reconfigured to

103

104 Conclusion

different devices, helping to reduce the set up time for a verification process. This was the main

reason for the deep and thorough explanation of every each class in chapter 4, The usage of the

environment should be accompanied, not only, with this document but, also, with the comments

available in the source code.

In the website created for this dissertation, it is possible to find a learning guide for UVM.

This guide was not originally planned for this dissertation but it was developed in parallel with

this project, mostly due to the lack learning resources of UVM available publicly.

The guide is intended to aid people, with no knowledge in UVM, in giving the first steps in

this methodology. It provides the basic understanding of each class and an explanation how to

succesfully compile a complete environment. The guide can also be consulted in the appendix A.

7.2 Features and results of the concluded work

As it is possible to conclude from chapters 6 and 5, the verification environment achieved the

expected results. It was able to successfully deal with two different devices: one of them was

created specially for this dissertation and the other one was based on a already exisiting device.

In the end, the testbench is capable of:

• Activating and deactivating agents from the testbench manually

• Establishing relationship master-slave between the agents

• Dinamically, managing active agents in the testbench (this mean, to automatically change

each agent’s state, like, enabling and disabling them)

• Activating individual resources of an agent so that they can be used by another one (it is

demonstrated in section 6.3.4)

• Supporting multiple configurations of the same DUT by activating and deactivating agents

• Forcing directed tests through configuration blocks

Building verification environments from scratch present a great challenge. However, during

the conception of a digital electronic device, verification is almost as important as the design of

the device itself, so it should not be neglected.

The SystemVerilog language and the UVM methodology are recent technologies that were

created assist the process of verifying digital. Hopefully, the cases, the testbench and the guide

studied, developed and written during this dissertation, may help other people to get started in

verification methodologies to further improve the quality of their projects.

Appendix A

UVM Guide for Beginners

This guide was developed in parallel with the dissertation and it was created from the need to

contribute for more resources about UVM. The guide is inserted as an appendix in order to help to

clarify some points about UVM that weren’t explained in the main document. Some of the parts

written from the guide were reused for the dissertation, so it is normal to see some duplicated

excerpts.

The code for this tutorial can be found in the website: http://colorlesscube.com/

A.1 Introduction

As digital systems grow in complexity, verification methodologies get progressively more es-

sential. While in the early beginnings, digital designs were verified by looking at waveforms and

performing manual checks, the complexity we have today don’t allow for that kind of verification

anymore and, as a result, designers have been trying to find the best way to automate this process.

The SystemVerilog language came to aid many verification engineers. The language featured

some mechanisms, like classes, covergroups and constraints, that eased some aspects of verifying

a digital design and then, verification methodologies started to appear.

UVM is one of the methodologies that were created from the need to automate verification.

The Universal Verification Methodology is a collection of API and proven verification guidelines

written for SystemVerilog that help an engineer to create a robust verification environment. It’s an

open-source standard maintained by Accellera and can be freely acquired in their website.

By mandating a universal convention in verification techniques, engineers started to develop

generic verification components that were portable from one project to another, this promoted the

cooperation and the sharing of techniques among the user base. It also encouraged the devel-

opment of verification components generic enough to be easily extended and improved without

modifying the original code.

105

106 UVM Guide for Beginners

All these aspects contributed for a reduced effort in developing new verification environments,

as designers can just reuse testbenches from previous projects and easily modify the components

to their needs.

This document will provide a training guide for verifying a basic adder block using UVM.

The guide will assume that you have some basic knowledge of SystemVerilog and will require

accompaniment of the following resources:

• Accellera’s UVM User’s Guide 1.1:

http://www.accellera.org/downloads/standards/uvm/uvm_users_guide_1.1.pdf

• Accellera’s UVM 1.1 Class Reference:

http://www.accellera.org/downloads/standards/uvm/UVM_1.1_Class_Reference_Final_06062011.pdf

• Verification Academy’s UVM Cookbook:

https://verificationacademy.com/cookbook/uvm

• Book "SystemVerilog for Verification: A Guide to Learning the TestBench Language Fea-

tures", Chris Spear

• Book "Comprehensive Functional Verification: The Complete Industry Cycle" by John Goss

This guide will be divided in 3 different parts:

1. The first part, starting on chapter 2, will explain the operation of the device under test (DUT):

the inputs, the outputs and the communication bus

2. The second part, starting on chapter 3, will give a brief overview of a generic verification

environment and the approach into verifying the DUT

3. The third part, starting on chapter 4, will start to describe a possible UVM testbench to be

used with our DUT with code examples. It’s important to consult to the external material in

order to better understand the mechanism behind the testbench.

A.2 The DUT 107

A.2 The DUT

This training guide will focus on showing how we can build a basic UVM environment, so the

device under test was kept very simple in order to emphasize the explanation of UVM itself.

The DUT used is a simple ALU, limited to a single operation: the add operation. The inputs

and outputs are represented in the figure A.1.

clk

ina out

inb en_o

en_i

simpleadder

 DUT

Figure A.1: Representation of the DUT’s inputs/outputs

This DUT takes two values of 2 bits each, ina and inb, sums them and sends the result to the

output out. The inputs are sampled to the signal of en_i and the output is sent at the same time

en_o is signalled.

The operation of the DUT is represented as a timing diagram and as a state machine in the

figure A.2.

clk

en_i

ina

inb

en_o

out

1

1

1

1 10

0

state: 0

Waits for en_i

state: 1
starts reading

 inputs

en_i

state: 2
sends the result

 to the output

after reading

 2 bits

after sending

 the output

Figure A.2: Operation of the DUT

108 UVM Guide for Beginners

A.3 Defining the verification environment

Before understanding UVM, we need to understand verification.

Right now, we have a DUT and we will have to interact with it in order to test its functionality,

so we need to stimulate it. To achieve this, we will need a block that generates sequences of bits

to be transmitted to the DUT, this block is going to be named sequencer.

Usually sequencers are unaware of the communication bus, they are responsible for generating

generic sequences of data and they pass that data to another block that takes care of the communi-

cation with the DUT. This block will be the driver.

While the driver maintains activity with the DUT by feeding it data generated from the se-

quencers, it doesn’t do any validation of the responses to the stimuli. We need another block that

listens to the communication between the driver and the DUT and evaluates the responses from

the DUT. This block is the monitor.

Monitors sample the inputs and the outputs of the DUT, they try to make a prediction of the

expected result and send the prediction and result of the DUT to another block, the scoreboard, in

order to be compared and evaluated.

All these blocks constitute a typical system used for verification and it’s the same structure

used for UVM testbenches.

A.3 Defining the verification environment 109

You can find a representation of a similar environment in the figure A.3.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

Figure A.3: Typical UVM testbench

Usually, sequencers, drivers and monitors compose an agent. An agent and a scoreboard com-

pose an environment. All these blocks are controlled by a greater block denominated of test. The

test block controls all the blocks and subblocks of the testbench. This means that just by changing

a few lines of code, we could add, remove and override blocks in our testbench and build different

environments without rewriting the whole test.

To illustrate the advantage of this feature, let’s imagine a situation where we are testing a

another DUT that uses SPI for communication. If, by any chance, we want to test a similar DUT

but with I2C instead, we would just need to add a monitor and a driver for I2C and override the

existing SPI blocks, the sequencer and the scoreboard could reused just fine.

110 UVM Guide for Beginners

A.3.1 UVM Classes

The previous example demonstrates one of the great advantages of UVM. It’s very easy to re-

place components without having to modify the entire testbench, but it’s also due to the concept

of classes and objects from SystemVerilog.

In UVM, all the mentioned blocks are represented as objects that are derived from the already

existent classes.

A class tree of the most important UVM classes can be seen in the figure A.4.

uvm_void

uvm_object

uvm_report_objectuvm_transaction

uvm_sequence_item

uvm_sequence

uvm_phase uvm_con guration

uvm_component

uvm_sequencer

uvm_driver

uvm_monitor

uvm_agent

uvm_scoreboard

uvm_env

uvm_test

Figure A.4: Partial UVM class tree

The data that travels to and from our DUT will stored in a class derived either from uvm_sequence_item

or uvm_sequence. The sequencer will be derived from uvm_sequencer, the driver from uvm_driver,

and so on.

Every each of these classes already have some useful methods implemented, so that the de-

signer can only focus on the important part, which is the functional part of the class that will verify

the design. These methods are going to addressed further ahead.

For more information about UVM classes, you can consult the document Accellera’s UVM

1.1 Class Reference.

A.3 Defining the verification environment 111

A.3.2 UVM Phases

All these classes have simulation phases. Phases are ordered steps of execution implemented

as methods. When we derive a new class, the simulation of our testbench will go through these

different steps in order to construct, configure and connect the testbench component hierarchy.

The most important phases are represented in the figure .

build_phase

connect_phase

run_phase

report_phase

Figure A.5: Partial list of UVM phases

A brief explanation of each phase will follow:

• The build phase is used to construct components of the hierarchy. For example, the build

phase of the agent class will construct the classes for the monitor, for the sequencer and for

the driver.

• The connect is used to connect the different sub components of a class. Using the same

example, the connect phase of the agent would connect the driver to the sequencer and it

would connect the monitor to an external port.

• The run phase is the main phase of the execution, this is where the actual code of a simula-

tion will execute.

• And at last, the report phase is the phase used to display the results of the simulation.

There are many more phases but none of them are mandatory. If we don’t need to have one in

a particular class, we can just omit it and UVM will ignore it.

More information about UVM phasing can be consulted in Verification Academy’s UVM

Cookbook, page 48.

112 UVM Guide for Beginners

A.3.3 UVM Macros

Another important aspect of UVM are the macros. These macros implement some useful methods

in classes and in variables. they are optional, but recommended.

The most common ones are:

• ‘uvm_component_utils - This macro registers the new class type. It’s usually used when

deriving new classes like a new agent, driver, monitor and so on.

• ‘uvm_field_int - This macro registers a variable in the UVM factory and implements some

functions like copy(), compare() and print().

• ‘uvm_info - This a very useful macro to print messages from the UVM environment during

simulation time.

This guide will not go into much detail about macros, their usage is always the same for every

class, so it’s not worth to put much thought into it for now.

More information can be found in Accellera’s UVM 1.1 Class Reference, page 405.

A.3 Defining the verification environment 113

A.3.4 Typical UVM class

All this said, a typical UVM class will look a lot like the one described in the code A.1.

c l a s s g e n e r i c _ c o m p o n e n t ex tends uvm_component ;
‘ u v m _ c o m p o n e n t _ u t i l s (g e n e r i c _ c o m p o n e n t)

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;

/ / Code f o r c o n s t r u c t o r s goes h e r e
e n d _ f u n c t i o n : b u i l d _ p h a s e

f u n c t i o n void c o n n e c t _ p h a s e (uvm_phase phase) ;
super . c o n n e c t _ p h a s e (phase) ;

/ / Code f o r c o n n e c t i n g components goes h e r e
endfunc t ion : c o n n e c t _ p h a s e

ta sk r u n _ p h a s e (uvm_phase phase) ;
/ / Code f o r s i m u l a t i o n goes h e r e

endtask : r u n _ p h a s e

f u n c t i o n void r e p o r t _ p h a s e (uvm_phase phase) ;
/ / Code f o r showing s i m u l a t i o n r e s u l t s goes h e r e

endfunc t ion : r e p o r t _ p h a s e
e n d c l a s s : g e n e r i c _ c o m p o n e n t

Code A.1: Code for a generic component

The code listed here, is the most basic sample that all components will share as you will see

from now on.

114 UVM Guide for Beginners

A.3.5 SimpleAdder UVM Testbench

After a brief overview of a UVM testbench, it’s time to start developing one. By the end of this

guide, we will have the verification environment from the the figure A.6.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.6: SimpleAdder Final Testbench

This guide will begin to approach the top block and the interface (chapter 4), then it will ex-

plain what data will be generated with the sequences and sequencers on chapter 5.

Following the sequencers, it will explain how to drive the signals into the DUT and how to

observe the response in chapters 6 and 7 respectively.

Subsequently, it will explain how to connect the sequencer to the driver and the monitor to the

scoreboard in chapter 8. Then it will show to build a simple scoreboard in chapter 9.

And finally, the test will be executed and its output analyzed.

For the complete code of the testbench, it is provided a Makefile used to run the simulation.

This Makefile uses Synopsys’ VCS but it should be easily modifiable to be executed with any

HDL simulator.

A.4 Top Block 115

A.4 Top Block

In a normal project, the development of the DUT is done separately from the development of the

testbench, so there are two components that connects both of them:

• The top block of the testbench

• A virtual interface

The top block will create instances of the DUT and of the testbench and the virtual interface

will act as a bridge between them.

The interface is a module that holds all the signals of the DUT. The monitor, the driver and the

DUT are all going to be connected to this module.

The code for the interface can be seen in the code A.2.

i n t e r f a c e s i m p l e a d d e r _ i f ;
l o g i c s i g _ c l o c k ;
l o g i c s i g _ i n a ;
l o g i c s i g _ i n b ;
l o g i c s i g _ e n _ i ;
l o g i c s i g _ o u t ;
l o g i c s i g _ e n _ o ;

e n d i n t e r f a c e : s i m p l e a d d e r _ i f

Code A.2: Interface module - simpleadder_if.sv

After we have an interface, we will need the top block. This block will be a normal SystemVer-

ilog module and it will be responsible for:

• Connecting the DUT to the test class, using the interface defined before.

• Generating the clock for the DUT.

• Registering the interface in the UVM factory.

This is necessary in order to pass this interface to all other classes that will be instantiated

in the testbench.

It will be registered in the UVM factory by using the uvm_resource_db method and every

block that will use the same interface, will need to get it by calling the same method.

It might start to look complex, but for now we won’t need to worry about it too much.

• Running the test.

116 UVM Guide for Beginners

The source for the top block is represented in the code A.3.

‘ i n c l u d e " s i m p l e a d d e r _ p k g . sv "
‘ i n c l u d e " s i m p l e a d d e r . v "
‘ i n c l u d e " s i m p l e a d d e r _ i f . sv "

module s i m p l e a d d e r _ t b _ t o p ;
import uvm_pkg : : ∗ ;

/ / I n t e r f a c e d e c l a r a t i o n
s i m p l e a d d e r _ i f v i f () ;

/ / Connec t s t h e I n t e r f a c e t o t h e DUT
s i m p l e a d d e r d u t (v i f . s i g _ c l o c k ,

v i f . s i g _ e n _ i ,
v i f . s i g _ i n a ,
v i f . s i g _ i n b ,
v i f . s ig_en_o ,
v i f . s i g _ o u t) ;

i n i t i a l begin
/ / R e g i s t e r s t h e I n t e r f a c e i n t h e c o n f i g u r a t i o n b l o c k
/ / so t h a t o t h e r b l o c k s can use i t
uvm_resource_db #(v i r t u a l s i m p l e a d d e r _ i f) : : s e t

(. s cope (" i f s ") , . name (" s i m p l e a d d e r _ i f ") , . v a l (v i f)) ;

/ / E x e c u t e s t h e t e s t
r u n _ t e s t () ;

end

/ / V a r i a b l e i n i t i a l i z a t i o n
i n i t i a l begin

v i f . s i g _ c l o c k <= 1 ’ b1 ;
end

/ / Clock g e n e r a t i o n
always

#5 v i f . s i g _ c l o c k = ~ v i f . s i g _ c l o c k ;
endmodule

Code A.3: Top block - simpleadder_tb_top.sv

A brief explanation of the code will follow:

• The lines 2 and 3 include the DUT and the interface into the top block, the line 5 imports

the UVM library, lines 11 to 16 connect the interface signals to the DUT.

• Line 21 registers the interface in the factory database with the name "simpleadder_if".

• Line 25 runs one of the test classes defined at compilation runtime. This name is specified

in the Makefile.

A.4 Top Block 117

• Line 35 generates the clock with a period of 10 timeunits. The timeunit is also defined in

the Makefile.

For more information about interfaces, you can consult:

• Book "SystemVerilog for Verification: A Guide to Learning the TestBench Language Fea-

tures", chapter 5.3

118 UVM Guide for Beginners

A.5 Transactions, sequences and sequencers

The first step in verifying a RTL design is defining what kind of data should be sent to the

DUT. While the driver deals with signal activities at the bit level, it doesn’t make sense to keep

this level of abstraction as we move away from the DUT, so the concept of transaction was created.

A transaction is a class object, usually extended from uvm_transaction or uvm_sequence_item

classes, which includes the information needed to model the communication between two or more

components.

Transactions are the smallest data transfers that can be executed in a verification model. They

can include variables, constraints and even methods for operating on themselves. Due to their high

abstraction level, they aren’t aware of the communication protocol between the components, so

they can be reused and extended for different kind of tests if correctly programmed.

An example of a transaction could be an object that would model the communication bus of

a master-slave topology. It could include two variables: the address of the device and the data

to be transmitted to that device. The transaction would randomize these two variables and the

verification environment would make sure that the variables would assume all possible and valid

values to cover all combinations.

In order to drive a stimulus into the DUT, a so-called driver component converts transactions

into pin wiggles, while a so-called monitor component performs the reverse operation, converting

pin wiggles into transactions.

After a basic transaction has been specified, the verification environment will need to generate

a collection of them and get them ready to be sent to the driver. This is a job for the sequence.

Sequences are an ordered collection of transactions, they shape transactions to our needs and gen-

erate as many as we want. This means if we want to test just a specific set of addresses in a

master-slave communication topology, we could restrict the randomization to that set of values

instead of wasting simulation time in invalid values.

Sequences are extended from uvm_sequence and their main job is generating multiple trans-

actions. After generating those transactions, there is another class that takes them to the driver:

the sequencer. The code for the sequencer is usually very simple and in simple environments, the

default class from UVM is enough to cover most of the cases.

A.5 Transactions, sequences and sequencers 119

A representation of this operation is shown in the figure A.7.

Transaction #1

Transaction #2

Transaction #3

...

Sequence

Sequencer Driver

Figure A.7: Relation between a sequence, a sequencer and a driver

The sequence englobes a group of transactions and the sequencer takes a transaction from the

sequence and takes it to the driver.

To test our DUT we are going to define a simple transaction, extended from uvm_sequence_item.

It will include the following variables:

• rand bit[1:0] ina

• rand bit[1:0] inb

• bit[2:0] out

The variables ina and inb are going to be random values to be driven to the inputs of the DUT

and the variable out is going to store the result. The code for the transaction is represented in the

code A.4.

c l a s s s i m p l e a d d e r _ t r a n s a c t i o n ex tends uvm_sequence_i tem ;
rand b i t [1 : 0] i n a ;
rand b i t [1 : 0] i n b ;
b i t [2 : 0] o u t ;

f u n c t i o n new (s t r i n g name = " ") ;
super . new (name) ;

endfunc t ion : new

‘ u v m _ o b j e c t _ u t i l s _ b e g i n (s i m p l e a d d e r _ t r a n s a c t i o n)
‘ u v m _ f i e l d _ i n t (ina , UVM_ALL_ON)
‘ u v m _ f i e l d _ i n t (inb , UVM_ALL_ON)
‘ u v m _ f i e l d _ i n t (out , UVM_ALL_ON)
‘ u v m _ o b j e c t _ u t i l s _ e n d

e n d c l a s s : s i m p l e a d d e r _ t r a n s a c t i o n

Code A.4: Transaction for the simpleadder

An explanation of the code will follow:

120 UVM Guide for Beginners

• Lines 2 and 3 declare the variables for both inputs. The rand keyword asks the compiler to

generate and store random values in these variables.

• Lines 6 to 8 include the typical class constructor.

• Lines 10 to 14 include the typical UVM macros.

These few lines of code define the information that is going to be exchanged between the DUT

and the testbench.

To demonstrate the reuse capabilities of UVM, let’s imagine a situation where we would want

to test a similar adder with a third input, a port named inc.

Instead of rewriting a different transaction to include a variable for this port, it would be easier

just to extend the previous class to support the new input.

It’s possible to see an example in the code A.7.

c l a s s s i m p l e a d d e r _ t r a n s a c t i o n _ 3 i n p u t s ex tends s i m p l e a d d e r _ t r a n s a c t i o n ;
rand b i t [1 : 0] i n c ;

f u n c t i o n new (s t r i n g name = " ") ;
super . new (name) ;

endfunc t ion : new

‘ u v m _ o b j e c t _ u t i l s _ b e g i n (s i m p l e a d d e r _ t r a n s a c t i o n)
‘ u v m _ f i e l d _ i n t (inc , UVM_ALL_ON)
‘ u v m _ o b j e c t _ u t i l s _ e n d

e n d c l a s s : s i m p l e a d d e r _ t r a n s a c t i o n _ 3 i n p u t s

Code A.5: Extension of the previous transaction

As a result of the class simpleadder_transaction_3inputs being an extension of simplead-

der_transaction, we didn’t need to declare again the other variables. While in small examples,

like this one, this might not look like something useful, for bigger verification environments, it

might save a lot of work.

A.5 Transactions, sequences and sequencers 121

A.5.1 Sequence

Now that we have a transaction, the next step is to create a sequence.

The code for the sequencer can be found in the code A.6.

c l a s s s i m p l e a d d e r _ s e q u e n c e ex tends uvm_sequence # (s i m p l e a d d e r _ t r a n s a c t i o n) ;
‘ u v m _ o b j e c t _ u t i l s (s i m p l e a d d e r _ s e q u e n c e)

f u n c t i o n new (s t r i n g name = " ") ;
super . new (name) ;

endfunc t ion : new

task body () ;
s i m p l e a d d e r _ t r a n s a c t i o n s a _ t x ;

r ep ea t (1 5) begin
s a _ t x = s i m p l e a d d e r _ t r a n s a c t i o n : : t y p e _ i d : : c r e a t e (. . .

s t a r t _ i t e m (s a _ t x) ;
a s s e r t (s a _ t x . r andomize ()) ;
f i n i s h _ i t e m (s a _ t x) ;

end
endtask : body

e n d c l a s s : s i m p l e a d d e r _ s e q u e n c e

Code A.6: Code for the sequencer

An explanation of the code will follow:

• Line 8 starts the task body(), which is the main task of a sequence.

• Line 11 starts a cycle in order to generate 15 transactions

• Line 12 initializes a blank transaction

• Line 14 is a call that blocks until the driver accesses the transaction being created

• Line 15 triggers the rand keyword of the transaction and randomizes the variables of the

transaction to be sent to the driver

• Line 16 is another blocking call which blocks until the driver has completed the operation

for the current transaction

122 UVM Guide for Beginners

A.5.2 Sequencer

The only thing missing is the sequencer. The sequence will be extended from the class uvm_sequencer

and it will be responsible for sending the sequences to the driver. The sequencer gets extended

from uvm_sequencer. The code can be seen in the code A.7.

t y p e d e f uvm_sequencer # (s i m p l e a d d e r _ t r a n s a c t i o n) s i m p l e a d d e r _ s e q u e n c e r ;

Code A.7: Extension of the previous transaction

The code for the sequencer is very simple, this line will tell UVM to create a basic sequencer

with the default API because we don’t need to add anything else.

The structure of the environment is represented on figure A.8.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.8: State of the verification environment after the sequencer

You might have noticed two things missing:

1. How does the sequence connects to the sequencer?

2. How does the sequencer connects to the driver?

The connection between the sequence and the sequencer is made by the test block, we will

come to this later on chapter 11, and the connection between the sequencer and the driver will be

explained on chapter 8.

A.5 Transactions, sequences and sequencers 123

For more information about transactions and sequences, you can consult:

• Accellera’s UVM 1.1 User’s Guide, page 48

• Verification Academy’s UVM Cookbook, pages 188 and 200

124 UVM Guide for Beginners

A.6 Driver

The driver is a block whose role is to interact with the DUT. The driver pulls transactions from

the sequencer and sends them repetitively to the signal-level interface. This interaction will be

observed and evaluated by another block, the monitor, and as a result, the driver’s functionality

should only be limited to send the necessary data to the DUT.

In order to interact with our adder, the driver will execute the following operations: control

the en_i signal, send the transactions pulled from the sequencer to the DUT inputs and wait for the

adder to finish the operation.

So, we are going to follow these steps:

1. Derive the driver class from the uvm_driver base class

2. Connect the driver to the signal interface

3. Get the item data from the sequencer, drive it to the interface and wait for the DUT execution

4. Add UVM macros

In the code A.8 you can find the base code pattern which is going to be used in our driver.

c l a s s s i m p l e a d d e r _ d r i v e r ex tends uvm_dr ive r # (s i m p l e a d d e r _ t r a n s a c t i o n) ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ d r i v e r)

/ / I n t e r f a c e d e c l a r a t i o n
p r o t e c t e d v i r t u a l s i m p l e a d d e r _ i f v i f ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;
void ’ (uvm_resource_db #(v i r t u a l s i m p l e a d d e r _ i f) : : read_by_name

(. scope (" i f s ") , . name (" s i m p l e a d d e r _ i f ") , . v a l (v i f))) ;
endfunc t ion : b u i l d _ p h a s e

ta sk r u n _ p h a s e (uvm_phase phase) ;
/ / Our code h e r e

endtask : r u n _ p h a s e
e n d c l a s s : s i m p l e a d d e r _ d r i v e r

Code A.8: Driver component - simpleadder_driver.sv

A.6 Driver 125

The code might look complex already but what it’s represented it’s the usual code patterns

from UVM. We are going to focus mainly on the run_phase() task which is where the behavior of

the driver will be stated. But before that, a simple explanation of the existing lines will be given:

• Line 1 derives a class named simpleadder_driver from the UVM class uvm_driver.

The #(simpleadder_transaction) is a SystemVerilog parameter and it represents the data

type that it will be retrieved from the sequencer.

• Line 2 refers to the UVM utilities macro explained on chapter 2.

• Lines 7 to 9 are the class constructor.

• Line 11 starts the build phase of the class, this phase is executed before the run phase

• Line 13 gets the interface from the factory database. This is the same interface we instanti-

ated earlier in the top block.

• Line 17 is the run phase, where the code of the driver will be executed.

Now that the driver class was explained, you might be wondering: "What exactly should I

write in the run phase?"

Consulting the state machine from the chapter 2, we can see that the DUT waits for the signal

en_i to be triggered before listening to the ina and inb inputs, so we need to emulate the states 0

and 1. Although we don’t intend to sample the output of the DUT with the driver, we still need to

respect it, which means, before we send another sequence, we need to wait for the DUT to output

the result.

To sum up, in the run phase the following actions must be taken into account:

1. Get a sequence item

2. Control the en_i signal

3. Drive the sequence item to the bus

4. Wait a few cycles for a possible DUT response and tell the sequencer to send the next

sequence item

The driver will end its operation the moment the sequencer stops sending transactions. This is

done automatically by the UVM API, so the designer doesn’t need to to worry with this kind of

details.

126 UVM Guide for Beginners

In order to write the driver, it’s easier to implement the code directly as a normal testbench

and observe its behavior through waveforms. As a result, in the next subchapter (6.0.8), the driver

will first be implemented as a normal testbench and then we will reuse the code to implement the

run phase.

A.6.1 Creating the driver as a normal testbench

For our normal testbench we will use regular Verilog code. We will need two things: generate the

clock and idesginate an end for the simulation. A simulation of 30 clock cycles was defined for

this testbench.

The code is represented in the code A.9.

/ / G e n e r a t e s c l o c k
i n i t i a l begin

#20 ;
f o r e v e r #20 c l k = ! c l k ;

end

/ / S t o p s t e s t b e n c h a f t e r 30 c l o c k c y l e s
always@ (posedge c l k)
begin

c o u n t e r _ f i n i s h = c o u n t e r _ f i n i s h + 1 ;

i f (c o u n t e r _ f i n i s h == 30) $ f i n i s h ;
end

Code A.9: Clock generation for the normal testbench

The behavior of the driver follows in the code A.10.

/ / D r i v e r
always@ (posedge c l k)
begin

/ / S t a t e 0 : D r i v e s t h e s i g n a l en_o
i f (c o u n t e r _ d r v ==0)
begin

e n _ i = 1 ’ b1 ;
s t a t e _ d r v = 1 ;

end

i f (c o u n t e r _ d r v ==1)
begin

e n _ i = 1 ’ b0 ;
end

case (s t a t e _ d r v)
/ / S t a t e 1 : T r a n s m i t s t h e two i n p u t s i n a and i n b

A.6 Driver 127

1 : begin
i n a = t x _ i n a [1] ;
i n b = t x _ i n b [1] ;

t x _ i n a = t x _ i n a << 1 ;
t x _ i n b = t x _ i n b << 1 ;

c o u n t e r _ d r v = c o u n t e r _ d r v + 1 ;
i f (c o u n t e r _ d r v ==2) s t a t e _ d r v = 2 ;

end

/ / S t a t e 2 : Wai t s f o r t h e DUT t o r e s p o n d
2 : begin

i n a = 1 ’ b0 ;
i n b = 1 ’ b0 ;
c o u n t e r _ d r v = c o u n t e r _ d r v + 1 ;

/ / A f t e r t h e supposed r e s p o n s e , t h e TB s t a r t s ove r
i f (c o u n t e r _ d r v ==6)
begin

c o u n t e r _ d r v = 0 ;
s t a t e _ d r v = 0 ;

/ / R e s t o r e s t h e v a l u e s o f i n a and i n b
/ / t o send a g a i n t o t h e DUT
t x _ i n a <= 2 ’ b11 ;
t x _ i n b = 2 ’ b10 ;

end
end

endcase
end

Code A.10: Part of the driver

For this testbench, we are sending the values of tx_ina and tx_inb to the DUT, they are defined

in the beginning of the testbench (you can see the complete code attached to this guide).

We are sending the same value multiple times to see how the driver behaves by sending con-

secutive transactions.

After the execution of the Makefile, a file named simpleadder.dump will be created by VCS.

To see the waveforms of the simulation, we just need to open it with DVE.

The waveform for the driver is represented in the figure A.9.

It’s possible to see that the driver is working as expected: it drives the signal en_i on and off

as well the DUT inputs ina and inb and it waits for a response of the DUT before sending the

transaction again.

128 UVM Guide for Beginners

Figure A.9: Driver waveform

A.6.2 Implementing the UVM driver

After we have verified that our driver behaves as expected, we are ready to move the code into the

run phase as seen in the code A.11.

v i r t u a l ta sk d r i v e () ;
s i m p l e a d d e r _ t r a n s a c t i o n s a _ t x ;
i n t e g e r c o u n t e r = 0 , s t a t e = 0 ;
v i f . s i g _ i n a = 0 ’ b0 ;
v i f . s i g _ i n b = 0 ’ b0 ;
v i f . s i g _ e n _ i = 1 ’ b0 ;

f o r e v e r begin
i f (c o u n t e r ==0) begin

/ / Ge ts a t r a n s a c t i o n from t h e s e q u e n c e r and
/ / s t o r e s i t i n t h e v a r i a b l e ’ s a _ t x ’
s e q _ i t e m _ p o r t . g e t _ n e x t _ i t e m (s a _ t x) ;

end

@(posedge v i f . s i g _ c l o c k)
begin

i f (c o u n t e r ==0) begin
v i f . s i g _ e n _ i = 1 ’ b1 ;
s t a t e = 1 ;

end

i f (c o u n t e r ==1) begin
v i f . s i g _ e n _ i = 1 ’ b0 ;

end

case (s t a t e)
1 : begin

v i f . s i g _ i n a = s a _ t x . i n a [1] ;
v i f . s i g _ i n b = s a _ t x . i n b [1] ;

s a _ t x . i n a = s a _ t x . i n a << 1 ;

A.6 Driver 129

s a _ t x . i n b = s a _ t x . i n b << 1 ;

c o u n t e r = c o u n t e r + 1 ;
i f (c o u n t e r ==2) s t a t e = 2 ;

end

2 : begin
v i f . s i g _ i n a = 1 ’ b0 ;
v i f . s i g _ i n b = 1 ’ b0 ;
c o u n t e r = c o u n t e r + 1 ;

i f (c o u n t e r ==6) begin
c o u n t e r = 0 ;
s t a t e = 0 ;

/ / I n f o r m s t h e s e q u e n c e r t h a t t h e
/ / c u r r e n t o p e r a t i o n wi th
/ / t h e t r a n s a c t i o n was f i n i s h e d
s e q _ i t e m _ p o r t . i t em_done () ;
end

end
endcase

end
end

endtask : d r i v e

Code A.11: Task for the run_phase()

The ports of the DUT are acessed through the virtual interface with vif. <signal > as can be

seen in lines 4 to 6.

Lines 12 and 50 use a special variable from UVM, the seq_item_port to communicate with

the sequencer. The driver calls the method get_next_item() to get a new transaction and once the

operation is finished with the current transaction, it calls the method item_done(). If the driver

calls get_next_item() but the sequencer doesn’t have any transactions left to transmit, the current

task returns.

This variable is actually a UVM port and it connects to the export from the sequencer named

seq_item_export. The connection is made by an upper class, in our case, the agent. Ports and

exports are going to be further explained in chapter 7.0.10.

130 UVM Guide for Beginners

This concludes our driver, the full code for the driver can be found in the file simplead-

der_driver.sv. In the figure A.10, the state of the verification environment with the driver can

be seen.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.10: State of the verification environment with the driver

A.7 Monitor 131

A.7 Monitor

The monitor is a self-contained model that observes the communication of the DUT with the

testbench. At most, it should observe the outputs of the design and, in case of not respecting the

protocol’s rules, the monitor must return an error.

The monitor is a passive component, it doesn’t drive any signals into the DUT, its purpose is

to extract signal information and translate it into meaningful information to be evaluated by other

components. A verification environment isn’t limited to just one monitor, it can have multiple of

them.

The monitors should cover:

• The outputs of the DUT for protocol adherence

• The inputs of the DUT for functional coverage analysis

The approach we are going to follow for this verification plan is: sample both inputs, make a

prediction of the expected result and compare it with the result of the DUT.

Consequently, we are going to create two different monitors:

• The first monitor, monitor_before, will look solely for the output of the device and it will

pass the result to the scoreboard.

• The second monitor, monitor_after, will get both inputs and make a prediction of the ex-

pected result. The scoreboard will get this predicted result as well and make a comparison

between the two values.

132 UVM Guide for Beginners

A portion of the code for both monitors can be seen in the code A.12 and in the code A.13.

c l a s s s i m p l e a d d e r _ m o n i t o r _ b e f o r e ex tends uvm_monitor ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ m o n i t o r _ b e f o r e)

u v m _ a n a l y s i s _ p o r t # (s i m p l e a d d e r _ t r a n s a c t i o n) mon_ap_before ;

v i r t u a l s i m p l e a d d e r _ i f v i f ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;

void ’ (uvm_resource_db #(v i r t u a l s i m p l e a d d e r _ i f) : : read_by_name
(. scope (" i f s ") , . name (" s i m p l e a d d e r _ i f ") , . v a l (v i f))) ;

mon_ap_before = new (. name (" mon_ap_before ") , . p a r e n t (t h i s)) ;
endfunc t ion : b u i l d _ p h a s e

ta sk r u n _ p h a s e (uvm_phase phase) ;
/ / Our code h e r e

endtask : r u n _ p h a s e
e n d c l a s s : s i m p l e a d d e r _ m o n i t o r _ b e f o r e

Code A.12: Code for monitor_before

c l a s s s i m p l e a d d e r _ m o n i t o r _ a f t e r ex tends uvm_monitor ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ m o n i t o r _ a f t e r)

u v m _ a n a l y s i s _ p o r t # (s i m p l e a d d e r _ t r a n s a c t i o n) m o n _ a p _ a f t e r ;

v i r t u a l s i m p l e a d d e r _ i f v i f ;

s i m p l e a d d e r _ t r a n s a c t i o n s a _ t x _ c g ;

covergroup s i m p l e a d d e r _ c g ;
i n a _ c p : c o v e r p o i n t s a _ t x _ c g . i n a ;
i n b_ cp : c o v e r p o i n t s a _ t x _ c g . i n b ;
c r o s s i na_cp , i n b_ cp ;

endgroup : s i m p l e a d d e r _ c g

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;
s i m p l e a d d e r _ c g = new ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;

A.7 Monitor 133

super . b u i l d _ p h a s e (phase) ;

void ’ (uvm_resource_db #(v i r t u a l s i m p l e a d d e r _ i f) : : read_by_name
(. scope (" i f s ") , . name (" s i m p l e a d d e r _ i f ") , . v a l (v i f))) ;

m o n _ a p _ a f t e r = new (. name (" m o n _ a p _ a f t e r ") , . p a r e n t (t h i s)) ;
endfunc t ion : b u i l d _ p h a s e

ta sk r u n _ p h a s e (uvm_phase phase) ;
/ / Our code h e r e

endtask : r u n _ p h a s e
e n d c l a s s : s i m p l e a d d e r _ m o n i t o r _ a f t e r

Code A.13: Code for monitor_after

The skeleton of both monitors is very similar to the driver, except for Lines 4. They repre-

sent one of the existing UVM communication ports. These ports allow different objects to pass

transactions between them. In the section 7.0.10 you can consult a brief explanation of UVM ports.

The monitors will collect transactions from the virtual interface and use the analysis ports to

send those transactions to the scoreboard. The code for the run phase can be designed the same

way as for the driver but it was omitted in this section.

The full code for both monitors can be found in the file simpleadder_monitor.sv.

The the state of our verification environment after the monitors can be consulted in the figure

A.11.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.11: State of the verification environment after the monitors

134 UVM Guide for Beginners

A.7.1 TLM ports

In chapter 5, it was mentioned that transactions are the most basic data transfer in a verification

environment but another question arises: how do transactions are moved between components?

We have already talked about TLM before when we were designing the driver. The way the driver

gets transactions from the sequencer, it’s the same way the scoreboard gets them from the moni-

tors: through TLM.

TLM stands for Transaction Level Modeling and it’s a high-level approach to modeling com-

munication between digital systems. This approach is represented by two main aspects: ports and

exports.

A TLM port defines a set of methods and functions to be used for a particular connection,

while an export supplies the implementation of those methods. Ports and exports use transaction

objects as arguments.

We can see a representation of a TLM connection in the figure A.12.

producer consumer

top class

Figure A.12: Port-export communication

The communication is very easy to understand. The consumer implements a function that

accepts a transaction as an argument and the producer calls that very function while passing the

expected transaction as argument. The top block connects the producer to the consumer.

A sample code is provided in the table A.1.

The class topclass connects the producer’s test_port to the consumer’s test_export using the

connect() method. Then, the producer executes the consumer’s function testfunc() through test_port.

A particular characteristic of this kind of communication is that a port can only be connected

to a single export. But there are cases when we might be interested in having a special port that

can be plugged into several exports.

A third type of TLM port exists to cover these kind of cases: the analysis port.

An analysis port works exactly like a normal port but it can detect the number of exports that

are connected to it and every time a required function is asked through this port, all other compo-

nents whose exports are connected to an analysis port are going to be triggered.

A.7 Monitor 135

class topclass extends uvm_component;
. . .
function void connect_phase(uvm_phase phase);

. . .
producer.test_port.connect(consumer.test_export)
. . .

endfunction;
endclass;

class producer extends uvm_component; class consumer extends uvm_component;
uvm_blocking_put_port#(test_transaction) test_port; uvm_blocking_put_imp#(test_transaction,

consumer) test_export;
.
task run(); task testfunc(test_transaction t);

test_transaction t; //Code for testfunc() here...
test_port.testfunc(t); endtask

endtask
endclass endclass

Table A.1: Sample code for ports and exports

In the figure A.13 it’s represented an analysis port communication.

producer

consumer1

top class

consumer2

Figure A.13: Analysis port communication

The communication models mentioned here are part of Transaction Level Modeling 1.0. There

is another variant, TLM 2.0, that works with sockets instead of ports, but they aren’t going to be

mentioned in this training guide.

136 UVM Guide for Beginners

A brief summary of these ports and exports can be seen in the table A.2.

Symbol Type Port declaration
Port uvm_blocking_put_port #(transaction) port_name

Export uvm_blocking_put_imp #(transaction, classname) export_name
Analysis Port uvm_analysis_port #(transaction) analysis_port_name

Table A.2: Sum up of TLM-1.0 ports

For more information about TLM, you can consult:

• Accellera’s UVM 1.1 User’s Guide, page 11.

A.8 Agent 137

A.8 Agent

We have both monitors, the sequencer and the driver, so the next step is to connect them up.

This is a job for the agent.

An agent doesn’t require a run phase, there is no simulation code to be executed in this block

but there will be a connect phase, besides of the build phase.

We will construct the monitors, the sequencer and the driver in the build phase. We will also

need to create two analysis ports, these ports will act as proxies for the monitors to be connect to

an external scoreboard through the agent’s ports.

Note: We could have made the connection from the monitors directly to the scoreboard within

the Env class without passing by the agent’s ports. There are cases when this is the best option, or

other cases when it’s not. It’s always up to the designer to decide the best option.

After we have constructed the components we need, we have to make the connections between

them. Using the concepts learned in chapter 7.0.10 about TLM ports, we can connect each port to

its destination.

A part of the code for the agent can be seen in the code A.14.

c l a s s s i m p l e a d d e r _ a g e n t ex tends uvm_agent ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ a g e n t)

/ / A n a l y s i s p o r t s t o c o n n e c t t h e m o n i t o r s t o t h e s c o r e b o a r d
u v m _ a n a l y s i s _ p o r t # (s i m p l e a d d e r _ t r a n s a c t i o n) a g e n t _ a p _ b e f o r e ;
u v m _ a n a l y s i s _ p o r t # (s i m p l e a d d e r _ t r a n s a c t i o n) a g e n t _ a p _ a f t e r ;

s i m p l e a d d e r _ s e q u e n c e r s a _ s e q r ;
s i m p l e a d d e r _ d r i v e r s a _ d r v r ;
s i m p l e a d d e r _ m o n i t o r _ b e f o r e sa_mon_before ;
s i m p l e a d d e r _ m o n i t o r _ a f t e r s a _ m o n _ a f t e r ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;

a g e n t _ a p _ b e f o r e = new (. name (" a g e n t _ a p _ b e f o r e ") , . p a r e n t (t h i s)) ;
a g e n t _ a p _ a f t e r = new (. name (" a g e n t _ a p _ a f t e r ") , . p a r e n t (t h i s)) ;

138 UVM Guide for Beginners

s a _ s e q r = s i m p l e a d d e r _ s e q u e n c e r : : t y p e _ i d : : c r e a t e (. . .
s a _ d r v r = s i m p l e a d d e r _ d r i v e r : : t y p e _ i d : : c r e a t e (. . .
s a_mon_before = s i m p l e a d d e r _ m o n i t o r _ b e f o r e : : t y p e _ i d : : c r e a t e (. . .
s a _ m o n _ a f t e r = s i m p l e a d d e r _ m o n i t o r _ a f t e r : : t y p e _ i d : : c r e a t e (. . .

endfunc t ion : b u i l d _ p h a s e

f u n c t i o n void c o n n e c t _ p h a s e (uvm_phase phase) ;
super . c o n n e c t _ p h a s e (phase) ;
s a _ d r v r . s e q _ i t e m _ p o r t . c o n n e c t (s a _ s e q r . s e q _ i t e m _ e x p o r t) ;
sa_mon_before . mon_ap_before . c o n n e c t (a g e n t _ a p _ b e f o r e) ;
s a _ m o n _ a f t e r . m o n _ a p _ a f t e r . c o n n e c t (a g e n t _ a p _ a f t e r) ;

endfunc t ion : c o n n e c t _ p h a s e
e n d c l a s s : s i m p l e a d d e r _ a g e n t

Code A.14: Code for the agent

In the figure A.14, it’s represented the current state of our testbench.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.14: State of the testbench after the agent

For more information about agents you can consult:

• Accellera’s UVM 1.1 User’s Guide, page 43

• Verification Academy’s UVM Cookbook, page 42

A.9 Scoreboard 139

A.9 Scoreboard

The scoreboard is a crucial element in a self-checking environment, it verifies the proper oper-

ation of a design at a functional level. This component is the most difficult one to write, it varies

from project to project and from designer to designer.

In our case, we decided to make the prediction of the DUT functionality in the monitors and

let the scoreboard compare the prediction with the DUT’s response. But there are designers who

prefer to leave the prediction to the scoreboard. So the functionality of the scoreboard is very

subjective.

In the agent, we created two monitors, as a result, we will have to create two analysis exports

in the scoreboard that are going to be used to retrieve transactions from both monitors. After that,

a method compare() is going to be executed in the run phase and compare both transactions. If

they match, it means that the testbench and the DUT both agree in the functionality and it will

return an "OK" message.

But we have a problem: we have two transaction streams coming from two monitors and we

need to make sure they are synchronized. This could be done manually by writing appropriated

write() functions but there is an easier and cleaner way of doing this: by using UVM FIFO.

These FIFO will work as it’s represented in the figure A.15.

Monitor
After

Monitor
Before

Scoreboard

FIFO Before
write() get()

FIFO After
write() get()

compare()

Figure A.15: Usage of FIFO in the scoreboard

The FIFO are instantiated similarly to ports/exports, with uvm_tlm_analysis_fifo #(generic_transaction)

generic_fifo and they already implement the respective write() functions that are called from the

monitors. To access their data we just execute the get() method from each FIFO.

The code from the scoreboard follows in the code A.15.

c l a s s s i m p l e a d d e r _ s c o r e b o a r d ex tends uvm_scoreboard ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ s c o r e b o a r d)

140 UVM Guide for Beginners

u v m _ a n a l y s i s _ e x p o r t # (s i m p l e a d d e r _ t r a n s a c t i o n) s b _ e x p o r t _ b e f o r e ;
u v m _ a n a l y s i s _ e x p o r t # (s i m p l e a d d e r _ t r a n s a c t i o n) s b _ e x p o r t _ a f t e r ;

u v m _ t l m _ a n a l y s i s _ f i f o # (s i m p l e a d d e r _ t r a n s a c t i o n) b e f o r e _ f i f o ;
u v m _ t l m _ a n a l y s i s _ f i f o # (s i m p l e a d d e r _ t r a n s a c t i o n) a f t e r _ f i f o ;

s i m p l e a d d e r _ t r a n s a c t i o n t r a n s a c t i o n _ b e f o r e ;
s i m p l e a d d e r _ t r a n s a c t i o n t r a n s a c t i o n _ a f t e r ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;
t r a n s a c t i o n _ b e f o r e = new (" t r a n s a c t i o n _ b e f o r e ") ;
t r a n s a c t i o n _ a f t e r = new (" t r a n s a c t i o n _ a f t e r ") ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;
s b _ e x p o r t _ b e f o r e = new (" s b _ e x p o r t _ b e f o r e " , t h i s) ;
s b _ e x p o r t _ a f t e r = new (" s b _ e x p o r t _ a f t e r " , t h i s) ;

b e f o r e _ f i f o = new (" b e f o r e _ f i f o " , t h i s) ;
a f t e r _ f i f o = new (" a f t e r _ f i f o " , t h i s) ;

endfunc t ion : b u i l d _ p h a s e

f u n c t i o n void c o n n e c t _ p h a s e (uvm_phase phase) ;
s b _ e x p o r t _ b e f o r e . c o n n e c t (b e f o r e _ f i f o . a n a l y s i s _ e x p o r t) ;
s b _ e x p o r t _ a f t e r . c o n n e c t (a f t e r _ f i f o . a n a l y s i s _ e x p o r t) ;

endfunc t ion : c o n n e c t _ p h a s e

ta sk run () ;
f o r e v e r begin

b e f o r e _ f i f o . g e t (t r a n s a c t i o n _ b e f o r e) ;
a f t e r _ f i f o . g e t (t r a n s a c t i o n _ a f t e r) ;
compare () ;

end
endtask : run

v i r t u a l f u n c t i o n void compare () ;
i f (t r a n s a c t i o n _ b e f o r e . o u t == t r a n s a c t i o n _ a f t e r . o u t) begin

‘uvm_info (" compare " , {" T e s t : OK! " } , UVM_LOW) ;
end e l s e begin

‘uvm_info (" compare " , {" T e s t : F a i l ! " } , UVM_LOW) ;
end

endfunc t ion : compare
e n d c l a s s : s i m p l e a d d e r _ s c o r e b o a r d

Code A.15: Code for the scoreboard

In the figure A.16, it’s represented the current state of our testbench.

A.9 Scoreboard 141

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.16: State of the testbench after the scoreboard

For more information about scoreboards you can consult:

• Accellera’s UVM 1.1 User’s Guide, page 72

• Verification Academy’s UVM Cookbook, pages 155 and 163

• Comprehensive Functional Verification: The Complete Industry Cycle, J. Goss, page 82

142 UVM Guide for Beginners

A.10 Env

We are getting close to have a working testbench, there are two classes missing: the env and

the test.

The env is a very simple class that instantiates the agent and the scoreboard and connects them

together.

The source is represented in the code A.16.

c l a s s s i m p l e a d d e r _ e n v ex tends uvm_env ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ e n v)

s i m p l e a d d e r _ a g e n t s a _ a g e n t ;
s i m p l e a d d e r _ s c o r e b o a r d s a _ s b ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;
s a _ a g e n t = s i m p l e a d d e r _ a g e n t : : t y p e _ i d : : c r e a t e (. . .
s a _ s b = s i m p l e a d d e r _ s c o r e b o a r d : : t y p e _ i d : : c r e a t e (. . .

endfunc t ion : b u i l d _ p h a s e

f u n c t i o n void c o n n e c t _ p h a s e (uvm_phase phase) ;
super . c o n n e c t _ p h a s e (phase) ;
s a _ a g e n t . a g e n t _ a p _ b e f o r e . c o n n e c t (s a _ s b . s b _ e x p o r t _ b e f o r e) ;
s a _ a g e n t . a g e n t _ a p _ a f t e r . c o n n e c t (s a _ s b . s b _ e x p o r t _ a f t e r) ;

endfunc t ion : c o n n e c t _ p h a s e
e n d c l a s s : s i m p l e a d d e r _ e n v

Code A.16: Code for the env

A.10 Env 143

In the figure A.17, it’s represented the current state of our testbench. There is only one com-

ponent left now: the test class.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.17: State of the testbench after the env

144 UVM Guide for Beginners

A.11 Test

At last, we need to create one more block: the test. This block will derive from the uvm_test

class and it will have two purposes:

• Create the env block

• Connect the sequencer to the sequence

You might be wondering why are we connecting the sequencer and the sequence in this block,

instead of the agent block or the sequence block. The reason is very simple: by specifying in the

test class which sequence will be going to be generated in the sequencer, we can easily change the

kind of data is transmitted to the DUT without messing with the agent’s or sequence’s code.

c l a s s s i m p l e a d d e r _ t e s t ex tends u v m _ t e s t ;
‘ u v m _ c o m p o n e n t _ u t i l s (s i m p l e a d d e r _ t e s t)

s i m p l e a d d e r _ e n v sa_env ;

f u n c t i o n new (s t r i n g name , uvm_component p a r e n t) ;
super . new (name , p a r e n t) ;

endfunc t ion : new

f u n c t i o n void b u i l d _ p h a s e (uvm_phase phase) ;
super . b u i l d _ p h a s e (phase) ;
sa_env = s i m p l e a d d e r _ e n v : : t y p e _ i d : : c r e a t e (. . .

endfunc t ion : b u i l d _ p h a s e

ta sk r u n _ p h a s e (uvm_phase phase) ;
s i m p l e a d d e r _ s e q u e n c e s a _ s e q ;
phase . r a i s e _ o b j e c t i o n (. o b j (t h i s)) ;

s a _ s e q = s i m p l e a d d e r _ s e q u e n c e : : t y p e _ i d : : c r e a t e (. . .
a s s e r t (s a _ s e q . randomize ()) ;
s a _ s e q . s t a r t (sa_env . s a _ a g e n t . s a _ s e q r) ;

phase . d r o p _ o b j e c t i o n (. o b j (t h i s)) ;
endtask : r u n _ p h a s e

e n d c l a s s : s i m p l e a d d e r _ t e s t

Code A.17: Code for the test class

Line 21 starts a sequencer in the desired sequence for this test.

A.11 Test 145

In the figure A.18, it’s represented the current state of our testbench.

Top

SequencerMonitor

Driver

Scoreboard

DUT

Agent

Interface

Env

Test

After Before
sb_export_after sb_export_before

agent_ap_after agent_ap_before

seq_item_export

seq_item_port

outputs

inputs

After

mon_ap_after

Monitor
Before

mon_ap_before

Figure A.18: Final state of the testbench

Our testbench is finally ready, now it’s time to execute it and check the results.

146 UVM Guide for Beginners

A.12 Running the simulation

To run the simulation, we simply execute the provided Makefile:

$ make -f Makefile.vcs

The testbench will generate random inputs and then those inputs will be sent to the DUT. The

monitors will capture the data in the communication bus and make a prediction of the expected

result. Finally the scoreboard will evaluate the functionality by matching the DUT’s response with

the prediction made by one of the monitors. If the DUT and the prediction match, an "OK" mes-

sage will be outputted, otherwise, we will se a "Fail" message.

So, In the output of the simulation, we must find for the messages starting with UVM_INFO

because the compare() method from the scoreboard is going to print a message using the macro

‘uvm_info() with the result of the test.

The result of the simulation can be seen in the code A.18.

∗∗∗∗∗∗∗∗∗∗∗ IMPORTANT RELEASE NOTES ∗∗∗∗∗∗∗∗∗∗∗∗

You a r e u s i n g a v e r s i o n o f t h e UVM l i b r a r y t h a t has been compi l ed
with ‘UVM_NO_DEPRECATED u n d e f i n e d .
See h t t p : / /www. eda . o rg / svdb / view . php ? i d =3313 f o r more d e t a i l s .

(S p e c i f y +UVM_NO_RELNOTES t o t u r n o f f t h i s n o t i c e)

UVM_INFO @ 0 : r e p o r t e r [RNTST] Running t e s t s i m p l e a d d e r _ t e s t . . .
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 7 0 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 130 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 190 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 250 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 310 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 370 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 430 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 490 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 550 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 610 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 670 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 730 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 790 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO s i m p l e a d d e r _ s c o r e b o a r d . sv (4 9) @ 850 : u v m _ t e s t _ t o p . sa_env . s a _ s b [compare] T e s t : OK!
UVM_INFO . . / uvm−s r c / uvm−1.1d / s r c / ba se / u v m _ o b j e c t i o n . svh (1 2 6 8) @ 900 : r e p o r t e r [TEST_DONE]

−−− UVM Re por t Summary −−−

∗∗ Re po r t c o u n t s by s e v e r i t y
UVM_INFO : 16

A.12 Running the simulation 147

UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0
∗∗ Re po r t c o u n t s by i d
[RNTST] 1
[TEST_DONE] 1
[compare] 14
$ f i n i s h c a l l e d from f i l e " . . / uvm−s r c / uvm−1.1d / s r c / ba se / uvm_root . svh " , l i n e 4 3 0 .
$ f i n i s h a t s i m u l a t i o n t ime 900
V C S S i m u l a t i o n R e p o r t
Time : 900 ns
CPU Time : 2 .040 s e c o n d s ; Data s t r u c t u r e s i z e : 0 . 2Mb

Code A.18: Result of the simulation

148 UVM Guide for Beginners

Bibliography

[1] Verification Academy. UVM Cookbook. Mentor Graphics, 2013.

[2] Accellera. Universal Verification Methodology (UVM) 1.1 Class Reference. 2011.

[3] Accellera. Universal Verification Methodology (UVM) 1.1 User’s Guide. Accellera, 2011.

[4] Janick Bergeron. Writing testbenches: functional verification of HDL models. Kluwer Aca-

demic Publishers, 2003.

[5] Stephen A. Edwards. Design and Verification languages. Columbia University Computer

Science Technical Reports, (CUCS-046-04), 2004.

[6] Mark Glasser and Tom Fitzpatrick. Advanced Verification Methodology Cookbook. 2008.

[7] Nisvet Jusic and Jan Nillson. Design and Verification languages. 2007.

[8] GE Moore. Cramming more components onto integrated circuits. 86(1):82–85, 1965.

[9] S Rosenberg and KA Meade. A practical guide to adopting the universal verification method-

ology (UVM). lulu.com, 2010.

[10] Louis Scheffer, Luciano Lavagno, and Grant Martin. EDA for IC system design, verification,

and testing. CRC Press, 2006.

[11] National Semiconductor. LM4550 AC’97 Rev 2.1 Multi-Channel Audio Codec Datasheet,

2003.

[12] NXP Semiconductors. UM10204 I2C-bus specification and user manual. Rev, (April), 2007.

[13] Chris Spears. SystemVerilog for Verification: A Guide to Learning the Testbench Language

Features. Springer, 2007.

[14] Verisity. e Reuse Methodology (eRM) Developer Manual. 2004.

149

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Structure of the document

	2 State of the art
	2.1 Hardware Description Languages
	2.2 Functional Verification
	2.3 Hardware Verification Languages
	2.4 Verification Methodologies
	2.5 The Universal Verification Methodology
	2.5.1 UVM Overview
	2.5.2 UVM Classes
	2.5.3 UVM Phases
	2.5.4 UVM Macros
	2.5.5 Typical UVM class
	2.5.6 TLM-1: Ports
	2.5.7 TLM-2.0: Sockets

	2.6 Conclusion

	3 Analysis of communication protocols
	3.1 X-PHY Overview
	3.2 X-PHY Verification
	3.3 I2C Overview
	3.4 I2C Verification
	3.4.1 Verifying an I2C slave
	3.4.2 Verifying an I2C master
	3.4.3 UVM verification components created for the I2C interfaces

	3.5 SOC Overview
	3.6 SOC Verification Plan
	3.6.1 Testing the slave interface
	3.6.2 Testing the slave interface and the low-speed lane
	3.6.3 Testing the slave interface and the low-speed and high-speed lanes

	3.7 Conclusion

	4 The Verification Environment
	4.1 Testbench Overview
	4.1.1 Class table
	4.1.2 File system

	4.2 Configuration Blocks
	4.2.1 Agent configuration block
	4.2.2 Env configuration block

	4.3 The Test Block
	4.4 The Env Block
	4.5 The Agent Manager
	4.6 Generic Info Block
	4.7 Socket containers
	4.8 Agents
	4.8.1 Master Agent
	4.8.2 Slave Agent

	4.9 Broadcaster
	4.10 Monitors
	4.10.1 Master Monitors
	4.10.2 Slave Monitors
	4.10.3 Normal Monitors

	4.11 Drivers
	4.12 Scoreboard, Sequencers, sequences and transactions
	4.13 Work flow
	4.14 Conclusion

	5 Application of the Environment to the SOC
	5.1 Verification of the SOC
	5.1.1 I2C Master Agent
	5.1.2 I2C Slave Agent
	5.1.3 Grouping the agents

	5.2 Conclusion

	6 Application of the Environment to the AC97
	6.1 Overview of the AC97
	6.1.1 AC-Link Interface

	6.2 Verification components
	6.2.1 Driving the inputs of the AC97 audio codec
	6.2.2 Collecting data items from the AC97's inputs and outputs
	6.2.3 Evaluating the results of the test
	6.2.4 Agent manager
	6.2.5 Summary of the verification components

	6.3 Test cases
	6.3.1 First test: Testing the DUT's registers
	6.3.2 Second test: Testing the Digital to Analog functionality
	6.3.3 Third test: Testing the Analog to Analog functionality
	6.3.4 Fourth test: Testing the Analog to Digital functionality
	6.3.5 Automatization of the environment

	6.4 Conclusion

	7 Conclusion
	7.1 Summary of the developed work
	7.2 Features and results of the concluded work

	A UVM Guide for Beginners
	A.1 Introduction
	A.2 The DUT
	A.3 Defining the verification environment
	A.3.1 UVM Classes
	A.3.2 UVM Phases
	A.3.3 UVM Macros
	A.3.4 Typical UVM class
	A.3.5 SimpleAdder UVM Testbench

	A.4 Top Block
	A.5 Transactions, sequences and sequencers
	A.5.1 Sequence
	A.5.2 Sequencer

	A.6 Driver
	A.6.1 Creating the driver as a normal testbench
	A.6.2 Implementing the UVM driver

	A.7 Monitor
	A.7.1 TLM ports

	A.8 Agent
	A.9 Scoreboard
	A.10 Env
	A.11 Test
	A.12 Running the simulation

