FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

[BPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Development of a reconfigurable
multi-protocol verification environment
using UVM methodology

Pedro Araujo

WORKING VERSION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Teacher supervisor: José Carlos Alves

Company supervisors: Luis Cruz and Domingos Terra

June 30, 2014

(© Pedro Araujo, 2014

Resumo

Com o continuo avango da tecnologia CMOS, bem como, com o crescimento dos custos de pro-
ducgdo, torna-se cada vez mais importante produzir circuitos que cumpram todas as especificagdes
4 primeira (first time right). Uma ma verificacdo pode conduzir a que a janela de mercado se feche,
enquanto se corrigem os erros detectados da primeira implementacao.

O tipo de testes que t€m de ser feitas para os diferentes protocolos é em grande parte similar,
apesar das especificidades inerentes a cada um. A metodologia de verificacio UVM permite es-
truturar o ambiente de verificacdo numa arquitectura configurdvel baseada em camadas, utilizando
diferentes blocos genéricos. Desta forma é possivel especializar o ambiente de verificagdo a um
dado protocolo adicionando apenas as funcionalidades necessdrias a camada mais préxima do
DUT (Device Under Test).

O UVM ¢ uma metodologia que segue um standard que foi criado pela Accellera em con-
junto com os maiores fabricantes de ferramentas de desenho de circuitos electrénicos (Synopsys,
Mentor, Cadence). Esta parceria pretende estabelecer uma uniformizacao na industria electrénica,
aumentando a efici€ncia do desenvolvimento e reutilizagdo dos ambientes de verificagdo usados.
O UVM ¢ suportado pelas principais ferramentas de verificagao/simulacdo de circuitos digitais,
0 que o torna compativel com qualquer um dos simuladores das referidas empresas. A Accellera
disponibiliza para download uma API (Application Programming Interface) e uma implementacdo
de referéncia (baseado numa biblioteca de classes em SystemVerilog (IEEE 1800)), que suportam
o desenvolvimento de um ambiente de verificagdo genérico.

A dissertacdo origina da necessidade de reduzir o tempo de constru¢do de um ambiente de
verificagdo para um novo projecto. Tendo esta necessidade em consideragdo, a presente disser-
tacdo foca-se na tarefa principal de desenvolver um ambiente de verificagdo genérico que suporte
arquitectura bdsica de vdrios protocolos de comunicagdo, e a reconfigurabilidade necessdria para
suportar multiplas configuragées do mesmo DUT.

Este projecto foi sugerido pela Synopsys, uma das empresas lider na industria da Electronic
Design Automation, e ird ser executado no contexto do trabalho realizado pela Synopsys com
protocolos de comunicacdo a alta velocidade. O project vai ser realizado com as ferramentas da
Synopsys para a simulacdo e execugdo de cddigo Verilog e SystemVerilog.

O resultado do trabalho feito para esta dissertagdo ird consistir num ambiente de verificagao
genérico desenvolvido em SystemVerilog e seguindo a metodologia UVM. Juntamente com o
ambiente desenvolvido, esta dissertacdo serve de documentagdo sobre as funcdes e classes criadas
e a relagdo establecidas entre elas.

il

Abstract

With the ongoing progress of the CMOS technology, as well with the growing of production costs,
it’s more important than ever to develop digital circuits that comply with the specifications at the
first try (first time right). An incomplete verification can lead to a closing market window while
the errors detected during the first implementation are still being fixed.

The sort of tests that have to be done for the different communication protocols are very similar
between them, in despite of the nature of each one. The UVM verification methodology allows
to structure a verification environment in a configurable architecture based on layers by using a
variety of generic blocks. Thereby, it’s possible to specialize a verification environment to a given
protocol just by adding the necessary functionalities to the layers closer of the DUT (Device Under
Test).

UVM is a methodology that follows a standard created by Accellera jointly with the biggest
companies in the industry of electronic design automation (Synopsys, Mentor, Cadence). This
partnership intends to establish a standardization for verification methodologies in the electronic
industry, increasing the effiency of the development and the reusability of the employed verifica-
tion environments. UVM is used by the main verification/simulation tools of digital circuits and
therefore, it’s compatible with any of the simulators of the mentioned companies. Accellera pro-
vides an API (Application Programming Interface) and an implementation (based on a library of
classes in SystemVerilog (IEEE 1800)) which supports the development of verification environ-
ments.

This dissertation stems from the need in reducing the set up time of the verification envi-
ronment for a new project. By having this need in consideration, the present dissertation focus its
main goal in the development of a generic verification environment that supports the core architec-
ture of multiple communication protocols, and the necessary reconfigurability to support multiple
configurations of the same DUT.

The project was suggested by Synopsys, one of the leading companies in the Electronic Design
Automation industry, and it will performed within the scope of Synopsys’ work with high-speed
communication protocols. This project will be assisted by Synopsys’ tools for the simulation and
the execution of Verilog and SystemVerilog code.

The result of work done for this dissertation will consist on a generic verification environment
written in SystemVerilog while following the UVM methodology. Along with the developed en-
vironment, this dissertation provides a thorough documentation about the functions and classes
created and the relationship between them.

il

v

Acknowledgments

This project took more than 5 months to complete, 5 months of long working hours and of some
nights of short sleep. But it helped to have good people supporting me and keeping me on track,
specially during the hardest times.

Inside of this circle of people, I would like first to thank the people who proposed this project
in the first place: Luis Cruz and Domingos Terra. They had an incredible patience with me by
answering to all my questions whenever I needed, and the help that they provided me was essential.
I would also like to thank the professor José Carlos Alves, who was also part of the team and who
supervisioned me during the development of the project.

I would like to give my thanks to some friends who accompanied me during the long hours
spent at the office. They provided me with some good talks, which helped me to relax and to get
a new perspective whenever I got stuck in some part of the project: Denis Silva, Helder Campos
and Henrique Martins.

I want to include here, as well, the guys from the analog team: Bruno Silva, Hugo Gongalves
and Patricio Ferreira. Their presence during the lunch and snack breaks was the most enjoyable
and their cookies, the tastiest.

And at last, but not the least, I would like to thank some special friends, friends that showed
me and taught me that distance doesn’t break friendships. I would like thank Charlotte, Daniel
and Fotini. They provided me with some company through some long nights, they reminded me
to keep my progress reports updated and they lifted my spirits during the bad days. They were
able to give the best of advices when I needed most and their support was the most important to
me. Thank you.

I also want to thank all my friends who shared me with some great moments throughout this
academic journey.

Pedro Araujo

vi

“All courses of action are risky,

so prudence is not in avoiding danger, but calculating risk and acting decisively.
Make mistakes of ambition and not mistakes of sloth.

Develop the strength to do bold things, not the strength to suffer.”

Niccolo Machiavelli

vii

viii

Contents

1 Introduction
1.1 Context e
1.2 Structure of thedocument

2 State of the art

2.1 Hardware Description Languages
2.2 Functional Verification
2.3 Hardware Verification Languages
2.4 Verification Methodologies
2.5 The Universal Verification Methodology
25.1 UVMOVerviewo vttt
252 UVMCIASSes v v v v et e e e e e e
253 UVMPhases e
254 UVMMACIOS v v vt et e e e e e
255 TypicalUVMclass o oo
25.6 TLM-1:Portso e
257 TLM-2.0: Sockets e
2.6 Conclusion L

3 Analysis of communication protocols

3.1 X-PHY Overview e
3.2 X-PHY Verification
33 T2COVerview o v v it e e e e e
34 I2C Verification
34.1 VerifyinganI2Cslave
342 VerifyinganI2Cmaster
3.4.3 UVM verification components created for the 12C interfaces
35 SOCOVerview o v i v it e e e
3.6 SOC VerificationPlan L oL
3.6.1 Testing the slaveinterface
3.6.2 Testing the slave interface and the low-speed lane

3.6.3 Testing the slave interface and the low-speed and high-speed lanes
3.7 Conclusion e e e e e e

4 The Verification Environment

4.1 Testbench Overview e
4.1.1 Classtable
4.1.2 Filesystem

ix

NS N}

O 0 O L

CONTENTS

4.2 Configuration Blocks o 55
4.2.1 Agentconfigurationblock 55
4.2.2 Envconfigurationblock 57
43 TheTestBlock 58
44 TheEnvBlock 59
4.5 The AgentManager 61
4.6 GenericInfoBlock 62
477 Socket containerso i e e 63
4.8 AZeNtSo e e e e 66
4.8.1 Master Agent e e e e e 67
482 Slave Agent 68
4.9 Broadcaster e e 69
410 Monitors e e e 71
4.10.1 Master MONItOrs oot i 72
4.10.2 Slave Monitors L. 73
4.10.3 Normal Monitors e 74
411 DIivers o oo e e e e e 74
4.12 Scoreboard, Sequencers, sequences and transactions 75
413 Workflow 75
4.14 Conclusion L 76
Application of the Environment to the SOC 77
5.1 Verificationof the SOC 77
5.1.1 I2CMaster Agent. v v v i it e e 78
5.1.2 I2CSlave Agent 0 i e e 81
5.1.3 Groupingtheagents 82
5.2 Conclusion e 84
Application of the Environment to the AC97 85
6.1 Overviewof the ACO7 85
6.1.1 AC-LinkInterface 86
6.2 Verification components oo e 88
6.2.1 Driving the inputs of the AC97 audiocodec 88
6.2.2 Collecting data items from the AC97’s inputs and outputs 90
6.2.3 Evaluating the results of thetest 92
6.24 Agentmanager 92
6.2.5 Summary of the verification components 93
6.3 TeStCases e 94
6.3.1 First test: Testing the DUT s registers 94
6.3.2 Second test: Testing the Digital to Analog functionality 95
6.3.3 Third test: Testing the Analog to Analog functionality 97
6.3.4 Fourth test: Testing the Analog to Digital functionality 99
6.3.5 Automatization of the environment 100
6.4 Conclusion L e 100
Conclusion 103
7.1 Summary of the developed work L. 103
7.2 Features and results of the concludedwork 104

CONTENTS Xi

A UVM Guide for Beginners 105
A.l Introduction L 105
A2 The DUT e 107
A.3 Defining the verification environment 108

A3.1 UVMClasses oottt 110
A32 UVMPhases 111
A33 UVMMacros oo 112
A34 TypicalUVMclass 113
A.3.5 SimpleAdder UVM Testbench 114
A4 TopBlock 115
A.5 Transactions, sequences and s€qUeNCers 118
AS.1 Sequence 121
AS52 Sequencer e e e 122
A6 Driver o e e 124
A.6.1 Creating the driver as anormal testbench 126
A.6.2 Implementing the UVMdriver 128
AT Monitoro e 131
ATl TLMports e 134
A8 Agent e 137
A9 Scoreboard 139
ATOEnv . .o e 142
AT Test . . oo e 144

A.12 Running the simulation oL oo 146

Xii

CONTENTS

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
33
34

3.5
3.6
3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

Generictestbencho 6
Direct testing progress [13,p.6]o 7
Random testing progress [13,p.8] L 7
Structured testbench oL 8

Evolution of verification methodologies 10
Typical UVMtestbench L o 11
Partial UVMclasstree 13
Partial listof UVMphases 14
Port-export communicationo Lo Lo 17
Analysis port communicationo Lo 19
Representation of a socket communication with an initiator and a target component 20
Socket communication with an initiator, a passthrough and a target component . . 20
Applications of a possible X-PHY oL 0oL 24
X-PHY basiclane 24
States of X-PHY 25
Representation of 3 different situations for a trade-off between power and perfor-

MANCE .« . v v v e et e 25
X-PHY with3lanes 26
An UVM verification environment for the receiver of X-PHY 27
An UVM testbench with 2 instances of the same agent for a X-PHY device with 2

RX . e 28
An UVM verification environment with support for agent configuration 29
An UVM verification environment with support for an agent manager 30
Typical topology for an I2Cinterface 31
Representation of a start and stop conditiononan I2Cbus 31
Representation of an [2C read operation 32
Representation of an I2C write operation 32
Representation of an I2C write operationof 2 bytes 32
Representation of an 12C write operation without slave acknowledgement 33
Representation of a typical I2C timing diagram 33
Serial and parallel interfaces created for the I2C device 34
Class tree of the created components for a possible I2C testbench 38
Overview of the created SOC 39
Activating the low-speed lane of the SOC 40
Sending sound samples to the controller 40
Activating the high-speed lane of the SOC 40
Sending video samples to the controller 41

Xiii

X1V

LIST OF FIGURES
3.24 Testbench forone I2Cinterface 42
3.25 Testbench for two I2C interfaces 43
3.26 Testbench for the SOC with an agent manager 44
3.27 Complete testbench forthe SOC 44
3.28 Testbench for the SOC with Agent Slave 2 disabled 45
3.29 Testbench for the SOC with Agent Slave I disabled 45
4.1 A top level view of the verification environment 48
4.2 A top level view of the verification environment 49
43 Atoplevel viewofaslaveagent 50
44 Atoplevel view of amasteragent 51
4.5 A top level view of the verification environment with class names 51
4.6 Classtree of thecreatedtestbench 53
4.7 Configuration blocks of the verification environment 55
4.8 Test block of the verification environment 58
4.9 Envblock of the verification environment 59
4.10 Agent manager block of the verification environment 61
4.11 Sockets from the agent manager 63
4.12 Agents of the verification environment 66
4.13 A typical constitution of a masteragent 67
4.14 A typical constitution of aslaveagent 68
4.15 The broadcasterblock L 70
4.16 The master monitorblock L oL 72
4.17 Theslaveslaveblock 73
5.1 Agent for testing an I2C slave interface 78
5.2 Agent for testing an I2C master interface 81
5.3 Overview of the complete verification environment for the SOC 82

5.4 Verification environment reconfigured for a revision of the SOC that features only
one I2C-Slave L 82

5.5 Verification environment reconfigured for a revision of the SOC that features one
I2C-Slave and one I2C-Master 83
6.1 A simple model of LM4550 [11,p. 2] 85
6.2 Codec Input frame of an AC-Link interface 86
6.3 Codec Output frame of an AC-Link interface 87
6.4 LM4550 registers highlightedo 0L 94
6.5 LM4550 Testbench for the registers 95
6.6 LM4550 digital to analog functionality highlighted 95
6.7 LM4550 Testbench for the digital to analog functionality 96
6.8 LM4550 Testbench for the digital to analog functionality with the agent manager 97
6.9 LM4550 analog to analog functionality highlighted 97
6.10 LM4550 Testbench for the analog to analog functionality 98
6.11 LM4550 analog to digital functionality highlighted 99
6.12 LM4550 Testbench for the analog to digital functionality 99
A.1 Representation of the DUT’s inputs/outputs 107
A2 Operationofthe DUT 107

A3 Typical UVMtestbench 109

LIST OF FIGURES XV

A4 Partial UVMclasstree vttt 110
A.5 Partiallistof UVMphases 111
A.6 SimpleAdder Final Testbench, . 114
A.7 Relation between a sequence, a sequencer and adriver 119
A.8 State of the verification environment after the sequencer 122
A9 Driverwaveform 128
A.10 State of the verification environment with the driver 130
A.11 State of the verification environment after the monitors 133
A.12 Port-export cOmmunication ot e ot e 134
A.13 Analysis port communicationo i 135
A.14 State of the testbench after theagent 138
A.15 Usage of FIFO in the scoreboard 139
A.16 State of the testbench after the scoreboard 141
A.17 State of the testbench aftertheenv 143

A.18 Final state of the testbench, 145

XVi LIST OF FIGURES

List of Tables

2.1
2.2

3.1
3.2
33
34

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
52

6.1
6.2
6.3
6.4

Al
A2

Sample code for ports and exports L.
Sumupof TLM-1.0ports e

I2Ctransaction L
I2CAgentConfig e
I2C verification components e e
I2C verification components oo

Elements of the class generic_agent _config
Elements of the class generic_agent_config
Elements of the class generic_env_config
Elements of the class generic_test
Elements of the class generic_env
Elements of the class generic_agent_manager
Elements of the class generic_info_block
Elements of the class socket_slave_container
Elements of the class socket _slave container
Elements of the class generic_agent_master
Elements of the class generic_agent_slave
Elements of the class broadcaster
Elements of the class broadcaster
Elements of the class broadcaster

I2C-Master transaction oL oL e
Verification components for the testbench of the SOC

Transaction for generating values for the sine generator - ac97_trans_base
Transaction for generating values for the sine generator - ac97_trans_sine
Transaction for collecting transactions from the codec’s outputs - ac97_trans_ana
Elements of the AC97 testbench

Sample code for ports and exports
Sumupof TLM-1.0ports

XVii

19

35
36
38

52
56
57
58
60
62
63
64
65
67
69
70
72
73

80
84

Xviil LIST OF TABLES

Abbreviations and Symbols

API
AVM
DUT
EDA
eRM
HDL
HVL
IEEE
OovM
PSL
PHY
SOC
RTL
RVM
TLM
URM
UVM
VHDL
VMM

Application Programming Interface
Advanced Verification Methodology
Device Under Test

Electronic Design Automation

e Reuse Methodology

Hardware Description Language
Hardware Verification Language
Institute of Electrical and Electronics Engineers
Original Verification Methodology
Property Specification Language
Physical Layer of the OSI model
System on a Chip

Register-transfer level

Reuse Verification Methodology
Transaction Level Modeling

Universal Reuse Methodology

Universal Verification Methodology
VHSIC Hardware Description Language
Verification Methodology Manual

XiX

Chapter 1

Introduction

During the last decades, electronic circuits have grown in complexity and in production costs
which compelled engineers to research and develop new methods to verify the electronic design
in more comprehensive, detailed and efficient ways.

The UVM methodology is one of the results of the increasing need of digital verification.
It is designed in a way that allows to structure a verification environment in a reconfigurable
architecture, so it can be possible to reuse components of the same environment across multiple
technologies. This methodology is an industry standard recognized by Accellera System Initiative
and it’s comprised of a library for the SystemVerilog language (IEEE 1800) and a set of verification
guidelines.

One of the main advantages in reusing components from different verification environments,
consists in reducing the set up time of the verification of a new project, since it isn’t needed to
rebuild the reused components. Furthermore, devices that fall under the same category sometimes
share similarities in their core architecture and, as a result, their verification environment can also
share the same similarities. By studying these similarities, it is possible to develop a verification
environment, focused in a special category of devices, which include the necessary features to be
"ready to use", in a way that it is only required to add the components specific to each model while
reusing the available infrastructure.

This project is targeted to a category of high-speed communication protocols developed by
an EDA company, Synopsys. The purpose of this work is to take advantage of the best features
of UVM and develop a reconfigurable verification environment that supports multiple communi-
cation protocols with minimal development effort. The project will start with the analysis of an
existing verification environment used in a specific technology by Synopsys and then followed by
an analysis of the verification techniques that could be used across different protocols.

So the goals defined for this project are:

e Analysis of an existing verification environment and removal of all design logic specific to

the original protocol

e Revision of the verification environment in order to support multiple protocols

2 Introduction

e Creation of generic blocks to support the revised environment

e Configuration and application of the generic environment to another existent protocol

From this disseration, it will result a well documentated verification environment, written in
SystemVerilog and using the UVM methodology, that establishes an infrastructure which covers
the core architecure of the high-speed communication protocols used by Synopsys.

During the development of the project, it was also created an UVM guide for beginners to
this methodology. The guide includes a technical explanation of UVM and it is accompanied by
a code example to serve as an example on how to build a complete verification environment with
this methodology. It can be found in the appendix A of this document.

All the information about the project and the UVM guide can be consulted in the website built

for this dissertation: http://colorlesscube.com/

1.1 Context

This dissertation was proposed by Synopsys Portugal and it was carried out as part of the Master’s
Degree in Electrical and Computer Engineering of the Faculdade de Engenharia da Universidade
do Porto (FEUP).

The project was developed within the context of Synopsys’ work with high-speed communi-
cation protocols and it is focused on devices that adopt these technologies.

Synopsys is one of the leading companies in the electronic design automation industry. Two of
the most well known Synopsys’ tools include Design Compiler, a logic synthesis tool, and VCS,
a Verilog and SystemVerilog compiler. The later one was used as a main tool for this dissertation.

The offices of Synopsys Portugal in which this project took place are located at Maia and the

the team behind the project was constituted by:

e The author of this document: Pedro Araujo
e Faculty Supervisor: Professor José Carlos Alves

e Company Supervisors: Luis Cruz & Domingos Terra

1.2 Structure of the document

This document presents the following structure:

e Chapter 2 provides some background regarding the subjects of hardware description lan-
guages, the need for hardware verification languages, the motivation behind verification
methodologies and it also provides a technical overview of the Universal Verification Method-

ology.

1.2 Structure of the document 3

e Chapter 3 presents a study of the devices targeted by this thesis and some situations that the
verification environment has to support in order to fully verifiy this category of devices. In
addition, a custom device was created in order to demonstrate the features of the environ-

ment.

e In chapter 4, the developed verification environment is described in detail, accompanied by
the documentation of each class and the explanation of the design decisions taken during

the conception of the project.

e Chapter 5 represents an application of the verification environment to the custom device

created in chapter 3.

e Chapter 6 details the implementation of the same verification environment but to a different

device, a model of the audio codec AC97

e Chapter 7, which is the final chapter of this document, presents a summary of the developed

work throughout the semester and some conclusions.

e The appendix A presents the beginner’s guide created during this dissertation.

Introduction

Chapter 2

State of the art

Technology has advanced a long way and become increasingly complex. Its foundations started
with computers whose logic was maintained by valves and that eventually moved to microscopic
devices, like transistors.

In the early beginnings, electronic systems were designed directly at the transistor level by
hand, but due to the increasingly complexity of electronic circuits since the 1970s [8], it became
unpractical to design the core logic directly at the transistor level, so circuit designers started to de-
velop new ways to describe circuit functionality independently of the electronic technology used.
The result was the Hardware Description Languages and the era of Electronic Design Automation
was born.

Hardware description languages are languages that are used to define the behavior and the
structure of digital integrated circuits before they are translated into their own architecture. These
kind of languages enable the modeling of a circuit for posterior simulation and, most importantly,
translation into a lower level specification of physical electronic components.

A hardware description language resembles a typical programming language consists in a
textual description of expressions and control structures and although they both share some sim-
ilarities, they are not the same. One main difference is that HDL code is translated concurrently,
which is required in order to mimic hardware, and while programming languages, after compi-
lation, are translated into low level instructions for the CPU to interpret, HDL specifications are
translate to digital hardware, so using hardware description languages requires a different mindset
than using programming languages.

Nowadays, hardware description languages are the prevailing way of designing an integrated
circuit, having superseded schematic capture programs in the early 1990s, and became the core of

automated design environment. [10, p.15-1]

2.1 Hardware Description Languages

VHDL and Verilog are the two most popular HDL standards. [5] Verilog was created as a propri-
etary language by Phil Moorby and Prabhu Goel between 1983 and 1984 and it is formally based

6 State of the art

in the C language. Cadence bought the rights of the language in 1989 and made it public in 1990.
Eventually, IEEE adopted it as a standard in 1995 (IEEE 1364).

On the other hand, unlike Verilog which was originally designed to be used as a proprietary
tool, VHDL was intentionally designed to be a standard HDL. It was originally developed on
behalf of the U. S. Department of Defense between 1983 and 1984 but only released in 1985. It is
based on Ada programming language and it was adopted as a standard IEEE 1076 in 1978. [10,
p-15-3]

2.2 Functional Verification

Hardware description languages are tools that help engineers to easily specify abstract models of
digital circuits to translate them into real hardware, but after the design is complete, another issue
becomes noticeable: how can a designer know that the design works as intended?

This brings up the need for verification. Verification is defined as a process to demonstrate
the functional correctness of a design. [4, p.1] This process is done by the means of a testbench,
an abstract system that provides stimuli to the inputs of the design under verification (DUV) and

analyses its behavior. A verification environment is represented in the figure 2.1.

Testbench

Device
Under
Verification

A 4

A 4

Figure 2.1: Generic testbench

One of the most common uses of a testbench is to show that a certain design implements the
functionality defined in the specification. This task is known as functional verification. Normally,
the testbench implements a model of the functionality that the designer wants to test and it is
responsible to compare the results from that model with the results of the design under test. But
it is important to take in account that functional verification can show that a design meets the

specifications that have been verified but it cannot prove it. [4, p.2]

2.2 Functional Verification 7

The traditional approach to verification relies on directed test. Verification engineers conceive
a series of critical stimulus, apply them directly to the device under test (DUT) and check if the
result is the expected one. This approach makes steady progress and produces quick initial results
because it requires little effort for setting up the verification infrastructure. So given enough time,
it maybe possible to write all the tests needed to cover 100% of the design. This scenario is

represented in the figure 2.2.

N

100%

Coverage

>

Time

Figure 2.2: Direct testing progress [13, p.6]

But as the design grows in size and complexity, this becomes a tedious and a time consuming
task. Most likely, there will be not enough time to cover all the tests needed in a reasonable amount
of time and there will be bugs that the verification engineer won’t be able to predict. So, random
stimuli help to cover the unlikely cases.

However, in order to use random stimuli, there is the need of automating a process to generate
them and there is also the need of a block that predicts, keeps track of the results and that analyses
them: a scoreboard. Additionally, when using random stimulus, it will be needed to check what
cases were covered by the generated stimuli, so the testbench will need functional coverage as
well. Functional coverage is the process of measuring what space of inputs have been tested, what

areas of the design have been reached and what states have been visited. [13, p.13]

This kind of testbench requires longer time to develop, causing an initial delay in the start of
the verification process. However, random based testing can actually promote the verification of

the design by covering cases not achieved with directed tests, as seen in the figure 2.3

N\

100% |- -----mmmmmmaas peemmenn- .-
Randomr
% Test
© Directed Test
2
o
@) I_,
N
Time -

Figure 2.3: Random testing progress [13, p.8]

8 State of the art

2.3 Hardware Verification Languages

In the previous section, it was mentioned some features that a verification environment must have:
a stimulus generator, a functional coverage block, a scoreboard. However, it needs a block to drive
the generated stimulus to the DUT and a block that listens to the communication bus, so that the
responses of the DUT can be driven to the scoreboard block and to the functional coverage block.

A representation of this structured testbench can be seen in the figure 2.4.

Testbench

Functional
I Coverage
|

|
| Stimulus
| Generator

;

'_ .
=Y M R ——
o

Figure 2.4: Structured testbench

As testbenchs grow and become more complex, the verification process might be a more re-
source consuming task than the design itself. Today, in the semiconductor industry, verification
takes about 70% of the design effort and the number of verification engineers is twice the number
of RTL designers in the same project. After a project is completed, the code of the testbench takes
up to 80% of the total volume code. [4, p. 2]

As the circuit complexity grows, the verification process increases in complexity as well and
become a very important and critical part of the project. However, the typical HDL aren’t able
to cope with the complexity of today’s testbenches. Complex data structures, application of con-
straints to the random stimulus, presence of multiple functional blocks and functional coverage,
are all examples of features that aren’t available in the standard HDLs used for specification,
namely in Verilog and in VHDL, as these more focused in creating a model of a digital design
than programming verification. [7]

In order to solve this problem, Hardware Verification Languages (HVL) were created. The
first one to be created was Vera in 1995. It was an object-oriented language, originally propri-
etary, designed for creating testbenchs for Verilog. The language was bought in 1998 by Synopsys
and released to the public in 2001 as OpenVera. OpenVera has support for high-level data struc-
tures, constraint random variables and functional coverage, which can monitor variables and state
transitions, and Synopsys also added support for assertions capabilities.

In 1997, a company named Verisity created the proprietary language e. Like OpenVera, it is

also object-oriented and feature-wise, it is very similar to Vera.

2.4 Verification Methodologies 9

IBM also developed its own verification language, Property Specification Language. It is more
narrower than OpenVera or e and it is designed to exclusively specify temporal properties of the
hardware design. [7]

Eventually, the features of some languages like, OpenVera and PSL, were merged to Verilog
and it was created a new language, SystemVerilog. SystemVerilog supports a variety of operators
and data structures, as well constrained random variables, functional coverage checking and tem-
poral assertions. This new language was adopted as a standard IEEE 1364 in 2005 and is now the

most used verification language in the industry. [10, p. 15-17]

2.4 Verification Methodologies

The adoption of verification languages eased the process of verification but there was no con-
sensus in the proper use of a verification language. In the attempt of helping to deploy the right
use of a verification methodology, Verisity Design (now Cadence Design Systems) published in
2000 a collection of the best practices for verification targeted to the users of e language. Named
vAdvisor, it just consisted in a package of verification patterns in HTML format and it covered
many aspects like coverage modeling, self-checking testbenches and stimuli creation. [9, p. xvii]
In 2002, the same company revised vAdvisor and created the first verification library, the e Reuse
Methodology (eRM). It was a big step because it included fundamental examples like sequences,
objection mechanisms and scoreboards. [14]

In order to compete with Verisity Design, Synopsys presented in 2003 the Reuse Verifica-
tion Methodology (RVM) for Vera verification language. The most notable contribution of RVM
was the introduction of callbacks, that was inspired from software design patterns and adapted
to verification languages. Eventually, RVM was ported from Vera to SystemVerilog to create the
Verification Methodology Manual (VMM). [9, p. xviii]

Until this point in time, both verification methodologies had been proprietary and it was only
in 2006 that it was introduced the first open source verification methodology, the Advanced Veri-
fication Methodology (AVM) from Mentor Graphics. [6] This library incorporated the concept of
Transaction-Level Modeling from SystemC.

In 2005, after the acquisition of Verisity, Cadence started, as well, to port eRM to the standard
of hardware verification languages, SystemVerilog. The result was the open source methodology,
Universal Reuse Methodology (URM) in 2007.

However, in the joint task of merging the best features of each methodology, in 2008, Cadence
and Mentor Graphics integrated both URM and AVM into a single open source methodology, the
Open Verification Methodology (OVM). This collaborative effort ended up to be a good solution,
because not only unified the libraries and the documentation but also, due to the open source

nature, users could make their own contributions to the methodology. [9, p. xvii]

10 State of the art

Later on, Accellera group decided to adopt a standard for verification methodologies and OVM
was chosen as basis for this new standard and together, with Synopsys’ VMM contributions, a new
methodology was created: the Universal Verification Methodology (UVM). [1] A sum up of the

evolution of verification methodologies is represented in figure 2.5.

[—> [>[0T

| | | | | | >
| | | | | |
2000 2002 2004 2006 2008 2010

Figure 2.5: Evolution of verification methodologies

2.5 The Universal Verification Methodology

The UVM methodology is provided as an open-source library directly from the Accellera website
and it should be compatible with any HDL simulator that supports SystemVerilog, which means
it is highly portable. UVM is also based on the OVM library, this provides some background and
maturity to the methodology. These two points are two of the main reasons for industry approval
of the methodology.

Another key feature of UVM includes reusability. In a traditional testbench, if the DUT
changes, engineers would redo the testbench completely. This process takes some effort but most
of the times, if the testbench is correctly programmed, some blocks of it could be reused for the
new testbench.

On other occasions, under the same DUT, verification engineers might want to apply a different
test or change the kind of stimuli sent to the DUT. If the engineer doesn’t take in mind that the
test might change, he might end up revising the entire testbench. The lack of portability and
documentation of the testbench might lead to a complete revision of the testbench without any
margin for reusability.

UVM also addresses these kind of situations and specifies an API and guidelines for a standard
verification environment. This way, the environment is understood by any verification engineer

that understands the methodology and it becomes easily modifiable.

2.5 The Universal Verification Methodology 11

2.5.1 UVM Overview

The structure of an UVM environment is very similar to the testbenches mentioned previously.
It features the most common components, like monitors, drivers and scoreboards, as well other
classes that help to standardize testbenches across applications. A typical UVM environment is

represented in the figure 2.6.

Top
Test
Env
Scoreboard
Agent
—
Monitor Sequencer
DUT < Interface > Driver
|

Figure 2.6: Typical UVM testbench

In the represented testbench, there is a device under test (DUT) and it is intended to interact
with it in order to test its functionality, so there is the need to stimulate it. To achieve this, there
will be a block, that generates sequences of data to be transmitted to the DUT, named sequencer.

Information about the sequencer can be found in the appendix A.5

Usually sequencers are unaware of the details of the communication protocol, and are respon-
sible for generating generic sequences of data to another block that handles the communication
with the DUT. This block is called the driver. The appendix A.6 details the functionality of the
driver.

While the driver maintains activity with the DUT, by feeding it data generated from the se-
quencers, it doesn’t do any validation of the responses to the stimuli. The testbench needs another
block that listens to the communication between the driver and the DUT and that evaluates the
responses from the DUT. This block is the monitor. More information about the montor can be
consulted in the appendix A.7.

Monitors sample the inputs and the outputs of the DUT, they try to make a prediction of the
expected result and send the prediction and result of the DUT to another block, the scoreboard,

12 State of the art

in order to be compared and evaluated. More information about the scoreboard can be read in the
appendix A.9.

The components of the UVM environment communicate between each other by using the
Transaction Level communication. This communication will be address later in sections 2.5.6 and
2.5.7

All these blocks constitute a typical system used for verification and it is the same structure
used for UVM testbenches. Usually, sequencers, drivers and monitors compose an agent. An
agent and a scoreboard compose an environment. All these blocks are controlled by a higher level
block denominated fest. The test block controls all the blocks and sub-blocks of the testbench.
This means that just by changing a few lines of code, it is possible to add, remove and override
blocks in the testbench and build different environments without rewriting the whole test.

To illustrate the advantage of this feature, imagine a situation where a DUT that uses SPI for
communication is being tested. If, by any chance, we want to test a similar DUT but with 12C
instead, it would just need to add a monitor and a driver for I12C, and override the existing SPI

blocks, while keeping the sequencer and the scoreboard.

The current section gave an overview about the composition of an UVM environment. How-

ever, a deeper explanation of the UVM API will be provided in the following sections:

e The section 2.5.2 will explain the most important classes of the methodology

The phases of each class will be described in section 2.5.3

Each class has functionalities that are implemented by the usage of macros and the section

2.5.4 will explain the most important ones

The section 2.5.5 illustrates the code for a generic UVM component

The sections 2.5.6 and 2.5.7 refer to the Transaction Level communication between compo-

nents

2.5.2 UVM Classes

The example from chapter 2.5.1 demonstrates one of the great advantages of UVM. It is very
easy to replace components without having to modify the entire testbench, but it is also due to
the concept of classes and objects from SystemVerilog. In UVM, all the mentioned blocks are

represented as objects that are derived from the already existent classes.

2.5 The Universal Verification Methodology 13

A class tree of the most important UVM classes can be seen in the figure 2.7. [2]

uvm_void

uvm_object

uvm_transaction uvm_report_object uvm_phase uvm_configuration

uvm_sequence_item
uvm_component

uvm_sequence

uvm_sequencer uvm_monitor uvm_scoreboard uvm_test

uvm_driver uvm_agent uvm_env

Figure 2.7: Partial UVM class tree

The data that travels to and from our DUT will stored in a class derived either from uvm_sequence_item
or uvm_sequence. The sequencer will be derived from uvm_sequencer, the driver from uvm_driver,
and so on.

Every each of these classes already have some useful methods implemented, so that the de-
signer can only focus on the important part, which is the functional part of the class that will verify

the design. These methods are detailed in the next sections.

14 State of the art

2.5.3 UVM Phases

All the mentioned classes in chapter 2.5.2 have simulation phases. Phases are ordered steps of
execution implemented as methods. When a new class is derived, the simulation of the testbench
will go through these different steps in order to construct, configure and connect the testbench
component hierarchy.

The most important phases are represented in figure 2.8. [1, p.48]

build_phase

connect_phase

run_phase

report_phase

Figure 2.8: Partial list of UVM phases

e The build phase is used to construct components of the hierarchy. For example, the build
phase of the agent class will construct the classes for the monitor, for the sequencer and for

the driver.

e The connect is used to connect the different sub components of a class. Using the same
example, the connect phase of the agent would connect the driver to the sequencer and it

would connect the monitor to an external port.

e The run phase is the main phase of the execution, this is where the actual code of a simula-

tion will execute.

e The report phase is the phase used to display the results of the simulation.

There are many more phases but none of them are mandatory. If a particular class is not

needed, it is possible to omit it and the compiler will just ignore it.

2.5 The Universal Verification Methodology 15

2.5.4 UVM Macros

Another important aspect of UVM are the macros. These macros implement some useful methods

in classes and in variables. They are optional, but recommended. The most common ones are:

e ‘uvm_component_utils - This macro registers the new class type. It is usually used when

deriving new classes from uvm_component.

e ‘uvm_object_utils - This macro it is similar to the macro ‘uvm_component_utils but it is

used with classes derived from uvm_object.

e ‘uvm_field_int - This macro registers a variable in the UVM factory and implements some

functions like copy(), compare() and print().

e ‘uvm_info - This a very useful macro to print messages from the UVM environment during

simulation time.

e ‘uvm_error - This macro responsible for sending messages with an error tag to the output

log.

These are the most used macros, their usage is the same for every class, but there are more
macros available in the UVM APL. [2, p. 405]

16 State of the art

2.5.5 Typical UVM class

A typical UVM class has the structued listed in code 2.1.

1 | class generic_component extends uvm_component;

2 ‘uvm_component_utils (generic_component)

3

4 [] % % % s % ok ok ok ok ok ok ok ok ok kR ok ok ok ok ok ok ok ok K

5 //*%x Variables

6 T 5k sk s s ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

7 // The variables needed for the class go here
8

9 [] s % s s % ok ok ok ok ok ok ok ok ok sk kR ok ok ok ok ok ok ok ok

10 //*+x Constructor

11 [1% % sk ok sk sk ok ok sk ok sk ok ok ok ok ok ok ok o ok ok ok ok ok

12 function new(string name, uvm_component parent);
13 super .new(name, parent);

14 endfunction: new

15

16 [] % % sk sk sk sk ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok

17 // %% Phases

18] ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok skok ok ok ok ok ok k

19 function void build_phase (uvm_phase phase);
20 super . build_phase (phase);

21 //Code for constructors goes here

22 endfunction: build_phase

23

24 function void connect_phase (uvm_phase phase);
25 super.connect_phase (phase);

26 // Code for connecting components goes here
27 endfunction: connect_phase

28

29 task run_phase (uvm_phase phase);

30 //Code for simulation goes here

31 endtask: run_phase

32

33 function void report_phase (uvm_phase phase);
34 //Code for showing simulation results goes here
35 endfunction: report_phase

36 | endclass: generic_component

Code 2.1: Code for a generic component

The line 2 presents the macro for registering the component in the UVM environment, lines
11 to 13 represent the class constructor used to intialize the objects and variables from the class,
and from line 18 is placed the functions and the tasks for the UVM phases described in section
2.5.3.

2.5 The Universal Verification Methodology 17

2.5.6 TLM-1: Ports

The first step in verifying a RTL design is defining what kind of data should be sent to the DUT.
While the driver deals with signal activities at the bit level, it doesn’t make sense to keep this level
of abstraction as we move away from the DUT, so the concept of transaction was created.

A transaction is a class object, usually extended from uvm_transaction or uvm_sequence_item
classes, which includes the information needed to model the communication between two or more
components.

Transactions are the smallest data transfers that can be executed in a verification model. They
can include variables, constraints and even methods for operating on themselves. Due to their high
abstraction level, they aren’t aware of the communication protocol between the components, so
they can be reused and extended for different kind of tests if correctly programmed.

An example of a transaction could be an object that would model the communication bus of
a master-slave topology. It could include two variables: the address of the device and the data
to be transmitted to that device. The transaction would randomize these two variables and the
verification environment would make sure that the variables would assume all possible and valid
values to cover all combinations.

Now, another question arises: how are transactions transported between components? The
answer is: through TLM. Transaction Level Modeling and it’s a high-level approach to modeling
communication between digital systems. TLM provides a set of communication interfaces that
can be used to connect different components at the transaction level by isolating them in the
environment. This promotes reusable components and minimizes the time required to build a
verification environment. [3, p. 9]

There are two kinds of TLM communication interfaces: TLM-1 and TLM-2.0. This chapter
will focus on TLM-1 but more information about TLM-2.0 can be consulted later on chapter 2.5.7.

The TLM-1 is represented by two main aspects: ports and exports. A TLM port defines a
set of methods and functions to be used for a particular connection, while an export supplies the
implementation of those methods. Ports and exports use transaction objects as arguments.

Figure A.12 is possible to see a representation of a TLM-1 connection.

top class

producer [3 d consumer

Figure 2.9: Port-export communication

The consumer implements a function that accepts a transaction as an argument and the pro-
ducer calls that very function while passing the expected transaction as argument. The top block

connects the producer to the consumer.

18 State of the art

A sample code is provided in table 2.1.

Table 2.1: Sample code for ports and exports

class topclass extends uvm_component;
function void connect_phase(uvm_phase phase);
producer.test_port.connect(consumer.test_export);

endfunction: connect_phase
endclass: topclass

class producer extends uvm_component; class consumer extends uvm_component;
uvm_blocking_put_port#(test_transaction) uvm_blocking_put_imp#(test_transaction , consumer)
test_port; test_export;
task run(); task testfunc(test_transaction t);
test_transaction t; // Code for testfunc () here...
test_port.testfunc (t); endtask: testfunc
endtask: run endclass: consumer
endclass: producer

The class topclass connects the producer’s fest_port to the consumer’s test_export using the
connect() method. Then, the producer executes the consumer’s function testfunc() through test_port.

A particular characteristic of this kind of communication is that a port can only be connected
to a single export. But there are cases when we might be interested in having a special port that
can be plugged into several exports.

A third type of TLM port, analysis port, exists to cover these kind of cases.

An analysis port works exactly like a normal port but it can detect the number of exports
that are connected to it and every time a required function is asked through this port, all other

components whose exports are connected to an analysis port are going to be triggered.

2.5 The Universal Verification Methodology 19

Figure 2.10 represents an analysis port communication.

top class
| consumerl | | consumer?2 |

T

<

producer

Figure 2.10: Analysis port communication

The usage of analysis ports is very similar to normal ports, so it is not provided a code example
like in the table 2.1. However, a brief summary of these ports and exports can be seen in the